
Online Language Splatting

Supplementary Material

7. Super-Resolution Decoder Architecture
We illustrate the detailed network architecture of our super-
resolution decoder, as shown in Fig. 8. Since the design
only includes low-cost CNN layers, this module achieves
real-time. Together with the pixel-wise CLIP encoder, they
compose the real-time high-resolution CLIP embedding
module adopted in our online language splatting frame-
work. For training, we use a combination of losses to
ensure high-resolution feature quality and semantic coher-
ence. The loss function is defined as:

L = 0.8 · Lcosine + LL1 + 0.01 · LTV,

• LL1 is the L1 loss, computed as:

LL1 =
1

N

NX

i=1

|ypred − ygt| ,

• Lcosine is the cosine similarity loss, computed as:

Lcosine = 1− ypred · ygt

∥ypred∥∥ygt∥
,

• LTV is the total variation loss, computed as:

LTV =
X

i,j

|ypred(i, j)− ypred(i, j + 1)|

+
X

i,j

|ypred(i, j)− ypred(i+ 1, j)| .

where ypred is the predicted high-resolution feature map,
and ygt is the ground-truth feature map. The LTV loss
penalizes spatial discontinuities to ensure smoothness [8].
SRD is supervised using labels that are created from

SAM-generated masks. For each image, multiple points
are sampled, clustered, and refined to produce the most ac-
curate mask, which is then propagated consistently across
the labels. We train the model on the COCO and Omni
datasets, leveraging hierarchical features and supervised la-
bels to help the network learn to associate boundaries and
propagate information effectively. This enables the network
to produce high-quality, generalizable language features.

8. Comparison to Language-GS SoTA methods
on Replica Per Scene

We present the complete comparison to Language-GS SoTA
methods on each scene of Replica Dataset in Table 7. As ob-
served, our method achieve overall SoTA in both mIOU and

Figure 8. Super-Resolution Decoder (SRD) Architecture. The
architecture consists of multiple layers designed to transform low-
resolution input features into high-resolution outputs. The pro-
cess begins with Upsample Blocks, each composed of convo-
lutional layers, batch normalization (BN), ReLU activation, and
ConvTranspose layers for spatial upscaling. After successive up-
sampling with the fusion of encoder intermediate layers’ outputs,
the output passes through a final convolutional block and sigmoid
activation to produce the high-resolution feature map. This de-
coder refines low-resolution language features into detailed, pixel-
aligned high-resolution maps for enhanced spatial understanding.

Table 6. Top 10 Labels Used for Evaluation in Each Scene of
the Replica Dataset.

Scene Top 10 Labels
Office0 wall, rug, table, blinds, sofa, tv-screen, chair, floor, door, bin
Office1 wall, floor, pillow, blanket, blinds, desk, desk-organizer, monitor, table,

chair
Office2 wall, floor, table, sofa, panel, cushion, chair, tv-screen, bottle, tissue-

paper
Office3 floor, table, wall, window, chair, sofa, tablet, cushion, door, switch
Office4 wall, floor, chair, ceiling, window, bench, panel, tv-screen, table, clock
Room0 wall, window, floor, sofa, cushion, table, rug, lamp, book, indoor-plant
Room1 wall, window, blinds, floor, blanket, lamp, ceiling, comforter, night-

stand, picture
Room2 wall, chair, floor, plate, vase, window, table, indoor-plant, rug, shelf

LOC cross all scenes. On the ohter hand, certain inconsis-
tency is also observed cross views. This may stem from
varying domain gaps between testing scene and AE pre-
training domains. The online AE, pretrained on the COCO
and fine-tuned online, exhibits consistent results. In con-
trast, rows 1 and 2 (ours w/o online) use AEs trained on
other Replica scenes, where greater divergence from the
testing scene may cause inconsistency.

For evaluation, we utilize the following top 10 labels per
scene:

Table 7. Comprehensive evaluation on language mapping quality across Replica scenes. Our method is evaluated against offline SoTA
Lang-GS methods on the Replica dataset. We also analyze the impact of our key modules: Super-Resolution Decoder (SRD) and Online
Learned AutoEncoder (OLAE) in CLIP Compression. Specifically, for versions requiring in-domain fine-tuning, two scenes from each
column are held as testing scenes, while the remaining scenes are used for training. best , second-best]

Method Modules Room0 Room1 Room2 Office0 Time
SRD OLAE mIOU Loc mIOU Loc mIOU Loc mIOU Loc

LangSplat [36] − − 0.356 0.710 0.459 0.779 0.381 0.641 0.433 0.763 2.8 m/fr
Feature3DGS [60] − − 0.487 0.677 0.301 0.812 0.353 0.800 0.342 0.661 2.3 m/fr
LEGaussian [42] − − 0.346 0.801 0.259 0.544 0.270 0.662 0.082 0.651 32.1 s/fr

Ours

✗ ✗ 0.320 0.716 0.498 0.838 0.405 0.760 0.397 0.761

0.8 s/fr
COCO ✗ 0.405 0.788 0.554 0.850 0.497 0.832 0.457 0.805
COCO ✓ 0.389 0.773 0.493 0.832 0.576 0.833 0.454 0.758
Omni ✗ 0.414 0.706 0.499 0.876 0.534 0.860 0.405 0.737
Omni ✓ 0.552 0.810 0.505 0.939 0.493 0.824 0.433 0.774

Method Modules Office1 Office2 Office3 Office4 Time
SRD OLAE mIOU Loc mIOU Loc mIOU Loc mIOU Loc

LangSplat [36] − − 0.345 0.648 0.483 0.805 0.482 0.754 0.401 0.661 2.8 m/fr
Feature3DGS [60] − − 0.254 0.495 0.387 0.863 0.337 0.879 0.414 0.854 2.3 m/fr
LEGaussian [42] − − 0.354 0.414 0.178 0.680 0.267 0.943 0.204 0.766 32.1 s/fr

Ours

✗ ✗ 0.219 0.502 0.450 0.830 0.481 0.838 0.431 0.790

0.8 s/fr
COCO ✗ 0.272 0.393 0.570 0.847 0.553 0.919 0.492 0.824
COCO ✓ 0.357 0.525 0.574 0.820 0.495 0.766 0.498 0.765
Omni ✗ 0.388 0.674 0.610 0.889 0.455 0.802 0.455 0.802
Omni ✓ 0.357 0.734 0.522 0.826 0.578 0.887 0.458 0.812

9. Comparison to SLAM-GS SoTA methods on
Replica Per Scene

We present the complete SLAM-GS evaluation results for
each scene in Table 8. As observed, although our method in-
corporates additional open-vocabulary language mapping,
it maintains the novel view rendering quality of the base-
line MonoGS. Overall, our approach achieves state-of-the-
art (SoTA) performance in PSNR and LPIPS metrics.

10. Open-Vocabulary Evaluation
We compare our method with other offline Lang-GS meth-
ods using GPT-generated labels on Replica. We use GPT-4o
with the following prompt: ”Describe the image with 5 vo-
cabularies for each image to test object segmentation.” We
randomly select 30 images from 8 Replica sequences and
generate labels, which are then used as prompts to query
objects for these images. To generate segmentation masks
and ground truth, we use Grounded SAM [38], leveraging
the GPT-selected open-vocabulary (OV) labels as queries.

The evaluation results, comparing our method against of-
fline SoTA Lang-GS methods, are presented in Table 10.
While our method ranks secondary to LangSplat, it still out-
performs Feature3DGS and LEGaussian by large margins
and operates over 40× faster, highlighting its efficiency and
strong open-vocabulary segmentation performance.

We found that the key factors determining generalization

capability to open-vocabulary (OV) objects is the resolu-
tion of feature maps used for GS mapping. As observed,
the GPT-generated labels include many tiny objects such
as “thermostat”, “wall outlet”, and “digital clock”, which
are difficult to detect in low-resolution feature maps (See
Fig. 10 for examples.) Our method operates at a spatial
resolution (192×192) using SRD, which is much higher
compared to the pixel-wise encoder output (32x32), but re-
mains constrained by the speed requirement for online in-
tegration of language features into 3DGS. This resolution
may pose challenges for detecting tiny objects, however it
provides a significant advantage in running speed, making
our approach suitable for online SLAM applications. In
contrast, LangSplat operates at full-resolution feature maps
(1200×680), embedding them directly into 3DGS, which
enhances tiny object detection but comes at the cost of a
much slower runtime, making it unsuitable for real-time
SLAM applications.

We acknowledge tiny object detection as a limitation of
our current approach and discuss it further as part of our
future work in Sec. 15.

Additionally, we evaluate the open-vocabulary segmen-
tation of our model to determine whether it preserves the
ability to segment objects using novel textual descriptions
as prompts beyond the original COCO vocabulary. To
test this, we randomly sample 100 COCO test images and
use ChatGPT (GPT-4o) to generate semantically richer de-

Table 8. Per Scene Evaluation of SLAM-3DGS on Replica. Our method is evaluated against other SLAM-3DGS approaches based on
novel view rendering quality and camera localization error (ATE in cm). [Key: best , second-best]

Method w/ Lang. Room0 Room1 Room2 Office0
PSNR↑ SSIM↑ LPIPS↓ ATE↓ PSNR↑ SSIM↑ LPIPS↓ ATE↓ PSNR↑ SSIM↑ LPIPS↓ ATE↓ PSNR↑ SSIM↑ LPIPS↓ ATE↓

SplaTAM [15] ✗ 32.31 0.974 0.072 0.47 33.36 0.966 0.101 0.42 34.78 0.983 0.073 0.32 38.16 0.982 0.084 0.46
RTG-SLAM [35] ✗ 31.56 0.967 0.131 0.20 34.21 0.979 0.105 0.18 35.57 0.981 0.115 0.13 39.11 0.990 0.068 0.22
MonoGS [27] ✗ 33.36 0.941 0.086 0.458 33.58 0.942 0.086 0.424 34.12 0.950 0.081 0.490 40.91 0.980 0.045 0.615
Ours ✓ 33.38 0.940 0.085 0.325 33.46 0.941 0.079 0.416 34.35 0.952 0.075 0.483 40.91 0.978 0.048 0.550

Method w/ Lang. Office1 Office2 Office3 Office4
PSNR↑ SSIM↑ LPIPS↓ ATE↓ PSNR↑ SSIM↑ LPIPS↓ ATE↓ PSNR↑ SSIM↑ LPIPS↓ ATE↓ PSNR↑ SSIM↑ LPIPS↓ ATE↓

SplaTAM [15] ✗ 38.49 0.980 0.095 0.24 31.66 0.962 0.102 0.28 29.24 0.948 0.123 0.39 31.54 0.946 0.157 0.56
RTG-SLAM [35] ✗ 40.24 0.992 0.075 0.12 33.54 0.981 0.128 0.22 36.48 0.984 0.117 0.20 35.43 0.982 0.109 0.19
MonoGS [27] ✗ 39.77 0.976 0.049 0.327 33.81 0.907 0.114 0.341 35.17 0.954 0.058 0.303 35.02 0.952 0.082 0.405
Ours ✓ 39.60 0.976 0.044 0.382 33.05 0.901 0.125 0.396 34.98 0.955 0.053 0.203 36.75 0.957 0.063 0.423

Figure 9. Open-vocabulary segmentation. Left: COCO ground
truth segmentation. Right: Segmentation output of our module
using GPT-generated novel vocabulary prompt.

scriptions for each label, such as replacing ”car” with ”fu-
turistic electric vehicle with a sleek design”. Using our
trained model, which leverages CLIP-based feature repre-
sentations, we generate segmentation masks for both the
COCO labels and the GPT-generated descriptions. The
model achieves an mIoU of 0.389 with COCO labels and
0.392 with GPT labels (Table 9, demonstrating that it main-

tains segmentation performance regardless of textual vari-
ation. The qualitative results (Fig. 9 compare the COCO
ground-truth segmentation with our model’s segmentation
using GPT-generated novel descriptions. The results sup-
port the ability to generalize beyond COCO labels. These
findings confirm that despite being trained on COCO for
upsampling, the model effectively operates in an open-
vocabulary setting.

Table 9. Comparison of mIoU performance using COCO dataset
labels and ChatGPT-generated novel vocabulary on 100 randomly
sampled test images. The similar mIoU scores indicate that our
method preserves CLIP’s open-vocabulary capabilities.

Method mIOU

COCO labels 0.389
GPT novel labels 0.392

11. More Visualizations
In this section, we provide additional visualization results
in Figs. 12- 18. To ensure a fair comparison, we increase
LangSplat’s code size from 3 to 15 and upgrade Open-
CLIP’s [12] feature dimension from 512 to 768.

Details of heat map results and evaluation metrics.
We display 2D heat maps as query results throughout this
work. For each text query, LangSplat generates three
Gaussian relevancy language features, while our method
produces pixel-level language features through our high-
resolution model. To calculate localization and IoU metrics
and reduce the impact of outliers, similar to LangSplat, we
apply a mean convolution filter with a kernel size of 20 to
smooth the values in the language feature maps. The final
score is determined by selecting the maximum relevancy
score.

We used a score threshold of 0.4 for LangSplat and 0.5
for our method. We tuned the threshold that shows the best

Figure 10. Examples of GPT-generated object labels and masks from Grounded SAM.

Table 10. Comparison on GPT-generated labels for Replica.
[Key: best , second-best]

Method GPT-labels FeatureMap Res. Time
mIOU Loc

LangSplat [36] 0.660 0.880 1200×680 2.8 min/fr
Feature3DGS [60] 0.489 0.600 480×360 2.3 min/fr
LEGaussian [42] 0.241 0.703 184×110 32 s/fr
Ours 0.539 0.765 192×192 0.8 s/fr

Figure 11. We provide a visual comparison for feature maps by
FeatUP [8], the open-vocabulary segmentor from SEEM [62], and
our HR module. As observed, despite its simplicity, our HR mod-
ule achieves the highest feature quality at the lowest cost and
fastest speed. We believe our simple and highly effective design
provides valuable new insights. Black box: groundtruth.

object boundaries for each method for a fair comparison.
Values below the threshold are classified as background,
and those above it generate binary maps.

Table 11. Comparison of various language code sizes on Replica
Office0 (Of0) and Room2 (Rm2) sequences.

Size 128 64 32 20

Rm2
MSE 0.0064 0.0065 0.0065 0.0068
MAE 0.0497 0.0502 0.0505 0.0620

Cosine Sim. 0.9817 0.9764 0.9690 0.9000

Of0
MSE 0.0059 0.0060 0.0068 0.0074
MAE 0.0439 0.0445 0.0484 0.0570

Cosine Sim. 0.9823 0.9750 0.8790 0.7600

Table 12. Comparison of IOU and Localization (Loc) accuracy
across different code sizes (15, 6, 3) for Replica Office3 (Of3) and
Office4 (Of4) sequences.

Code Size Of3 IOU Of3 Loc Of4 IOU Of4 Loc

15 0.495 0.766 0.498 0.765
6 0.485 0.708 0.490 0.701
3 0.480 0.690 0.487 0.693

12. Language Compression
12.1. Study on Code Size
We study the generalizability of autoencoder code sizes
trained on COCO and tested on Replica sequences (Room2
(Rm2) and Office0 (Of0)) (see Table 11), evaluating recon-
struction quality using Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Cosine Similarity. MSE mea-
sures the squared differences between original and recon-
structed features, MAE quantifies the absolute deviation,
and Cosine Similarity assesses the alignment of feature vec-
tors. As the code size decreases, we observe an increase in
errors, which is expected due to the trade-off between com-
pactness and information retention. Smaller code sizes cre-

Table 13. Comparison on 3D localization evaluation. We counts a query as failure when a distance is larger than the CD/EMD’s
population mean plus 2× population standard deviation. Failures are excluded from the average and reported separately. Of: Office; Rm:
Room from the Replica Dataset.

Average CD Of0 Of1 Of2 Of3 Of4 Rm0 Rm1 Rm2 Overall
CD Failure CD Failure CD Failure CD Failure CD Failure CD Failure CD Failure CD Failure CD Total count

LangSplat [36] 1.175 1 0.764 3 1.232 1 0.828 1 1.450 1 0.942 1 1.044 1 0.342 1 0.972 10
Ours 0.620 1 0.922 3 0.804 1 0.284 1 1.380 0 0.657 1 0.582 2 0.567 1 0.736 10

Average EMD Of0 Of1 Of2 Of3 Of4 Rm0 Rm1 Rm2 Overall
EMD Failure EMD Failure EMD Failure EMD Failure EMD Failure EMD Failure EMD Failure EMD Failure EMD Total count

LangSplat [36] 7.369 2 4.745 4 2.949 1 5.512 1 17.42 2 4.549 1 3.824 2 4.109 2 6.310 15
Ours 1.574 1 2.292 5 9.001 1 7.949 1 9.157 1 1.498 1 13.987 1 0.100 3 5.695 14

Table 14. Comparison of 1-stage and 2-stage methods

Scene 1-stage (768 → 15) Offline 2-stage (768 → 32 Pretrained, 32 → 15 Online)

Room0 0.514, 0.835 0.552, 0.810
Room1 0.427, 0.839 0.505, 0.939
Room2 0.396, 0.801 0.493, 0.824
Office0 0.422, 0.761 0.433, 0.774
Office1 0.409, 0.802 0.522, 0.826

Mean 0.434, 0.808 0.501, 0.835

ate more compact feature representations but often reduce
structural detail and granularity in the reconstructed lan-
guage feature maps, leading to losses in semantic and spa-
tial accuracy. This happens because smaller latent spaces
constrain the feature encoding, causing a loss of fine-
grained variations that are essential for precise language-
based localization. To balance accuracy and computational
efficiency, we choose code 32, which retains sufficient se-
mantic fidelity while remaining efficient for real-time appli-
cations.

We evaluate the impact of varying the code size of
the online encoder-decoder on IOU and Localization (Loc)
metrics using Replica sequences. See Table 12. To bal-
ance memory and ensure real-time feasibility, we limit the
maximum code size to 15. Online training improves adapt-
ability by fine-tuning representations for specific sequences,
but its effectiveness depends on the code size. Smaller code
sizes constrain the latent space, leading to a loss of fine-
grained details and limiting the benefits of online training.
In contrast, a code size of 15 strikes a balance between com-
pression and capacity, allowing the model to leverage online
adaptability while preserving semantic and spatial accuracy.

12.2. Online Compression

Table 14 presents a comparison between single-stage and
two-stage compression methods across multiple scenes.

Table 15. Effects of disentangling GS parameters into color
and language modes.

Disentangled Mode Image Rendering
Separate α Separate R Separate S PSNR↑ SSIM↑ LPIPS↓

✗ ✗ ✗ 31.23 0.901 0.197
✗ ✓ ✓ 31.79 0.915 0.177
✓ ✗ ✗ 31.75 0.918 0.180
✓ ✓ ✗ 32.80 0.929 0.146
✓ ✗ ✓ 33.57 0.939 0.118
✓ ✓ ✓ 35.89 0.957 0.060

The results indicate that the two-stage method generally
offers improvements in both mIOU and localization accu-
racy, with certain scenes like Room1 demonstrating more
noticeable gains (mIOU from 0.427 to 0.505 and localiza-
tion accuracy from 0.839 to 0.939). While the single-stage
method is simpler and more memory-efficient, it may lose
important language features due to aggressive compression
(768D directly to 15D). Conversely, the two-stage method
introduces an intermediate compression stage, preserving
these language features but at the cost of increased com-
plexity. Therefore, the choice between these two methods
ultimately depends on the user’s specific requirements and
constraints regarding accuracy versus resource utilization.

13. Detailed Study on Disentanglement GS Pa-
rameters

First, as a more detailed version of the 3D localization eval-
uation compared to Table 5, we present per-class evaluation
results in Table 16. As observed, the disentangled optimiza-
tion leads to better overall performance and significant im-
provements on some classes.

Next, we study different strategies in GS parameter dis-
entanglement, including separating α, R and S into color
and language modes. In the forward rendering, we splat 3D
Gaussians onto the 2D space and conduct alpha composi-
tions using respective mode parameters to render color and
languages.

In the back-propagation, if α is disentangled into color
(c) and language (f) modes, we then calculate gradients by

∂L
∂αc

i

=
∂L
∂C

∂C

∂αc
i

+
∂L
∂D

∂D

∂αc
i

,
∂L
∂αf

i

=
∂L
∂F

∂F

∂αf
i

, (8)

where ∂L
∂αc

i
and ∂L

∂αf
i

further propagates to Ri and Si via

the world-coordinate 3D covariance matrix Σ
c/f
i . If α is

not disentangled, the gradient terms in Eq. (8) are added
together.

The same rule applies to Ri and Si. If it is disentangled,
its color or language mode’s gradients are separately com-
puted from (added or separated) ∂L

∂αi
. If not, its gradients

are added by both color and language modes.
Results shown in Table 15 validates that disentangling

R, S, and α works the best to preserve the highest image
quality. Comparing the fourth and fifth rows, one can also
find disentangling {α,S} has better effects than {α,R}.
This echoes the observation in the main paper Fig. 4: lan-
guage mode prefers larger scales to cover more areas that
belong to the same language codes, compared with color
rendering that needs smaller Guassians to represent finer
textures. Thus, disentangling S shows better performances.
As a further discussion, disentangling the world-coordinate
3D mean µ will produce much more Gaussians that attempt
to fit in color and language views separately. The setting
consumes 68% more memory than disentangling R, S,
and α and cannot finish training on a Replica sequence on a
RTX-3090 GPU.

14. More 3D Localization Evaluation
Following the 3D localization experiment in the main pa-
per, we show more 3D localization evaluation on the 8
sequences of the Replica Dataset. We adopt top-10 fre-
quent categories in each sequence including objects and
area, counted by visible pixels. Quantitative results are
provided in Table 13. Note that language label ambiguity
exists in Replica’s annotations. For instance, in the ”tv-
screen” example in Fig. 20, the groundtruth only counts in
the border areas and leaves out the center display areas as

”undefined”. Another example is in Fig. 19 the ceiling ar-
eas exclude the lights, which is also ambiguous in defining
the ceiling regions. This can result in significantly larger
point cloud distances, as measured by the CD and EMD
metrics, when queries return objects that do not align with
the definitions of the annotation system. To alleviate this,
for CD and EMD, we set a threshold that directly counts a
query as failure, when a distance exceeds the metric’s pop-
ulation mean plus 2× population standard deviation. The
failures are excluded from the average and reported sepa-
rately as counts of failure. Results are shown in Table 13.
Our method performs better than LangSplat on overall CD/
EMD with equal or smaller failure counts.

In Fig. 19 and 20, we visualize more 3D localization
results by language queries, which extend Fig. 6 in the main
paper with the same TSDF procedure to reconstruct meshes.

15. Limitations and Future Work
This work focuses on static scenes, which may limit its ap-
plicability to dynamic environments where objects or spa-
tial configurations change over time. Additionally, both our
method and LangSplat are susceptible to false positives for
objects that are visually or semantically similar. We no-
tice, for smaller objects SAM generated masks tends to pro-
duce more crisp results, whereas for room-sized objects our
method shows better localization accuracy due to globally
trained pixel-wise CLIP embedding.

In future work, we aim to extend our approach to dy-
namic scenes by incorporating mechanisms to handle tem-
poral changes and object motion. Additionally, we plan
to explore uncertainty quantification for language features
to better evaluate and communicate the reliability of pre-
dictions. This improvement would enhance practical use
cases, such as robotic navigation and interaction, where
confidence in localization is critical.

Table 16. Effects of Disentangled GS Parameters (Category-Wise). Here, we show category-wise results for language-queried 3D
localization on the Replica Room-0 subset.

Method 3D Language Query
cabinet cushion stool rug lamp wall ceiling Average

CD ↓ EMD↓ CD ↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓
Joint RGB-L 0.042 0.019 1.252 3.022 0.128 0.007 0.283 0.866 0.579 9.517 0.110 0.118 0.295 0.033 0.384 1.940
Disentangled 0.040 0.053 0.554 0.032 0.196 0.399 0.256 1.494 1.222 4.083 0.087 0.050 0.269 0.707 0.375 0.974

Figure 12. Our method is able to identify and segment all of the chairs, while LangSplat was only able to segment only two chairs.

Figure 13. Comparison of segmentation results for the query ”Table”. LangSplat successfully segments the table, while our method focuses
on the table top instead, leading to a segmentation error. This discrepancy is considered a failure case for our approach.

Figure 14. Both methods demonstrate 3D consistency. The top-right zoom-in image shows the vase from another frame. Our model, due
to its 3D consistency, successfully detects the vase from only very limited appearance in the current frame. This highlights the ability of
our method to handle occlusions or partial appearance effectively.

Figure 15. Comparison of floor segmentation results. LangSplat introduces outliers by incorrectly segmenting walls as part of the floor. In
contrast, our method accurately segments the floor without including such outliers.

Figure 16. Comparison of plate segmentation. LangSplat fails to detect the plate, whereas our method successfully identifies and segments
the plate on the table.

Figure 17. Comparison of ”Keyboard” query localization on TUM-RGBD.

Figure 18. Comparison of ”Game Controller” query localization on TUM-RGBD.

Figure 19. Comparison of 3D localization by queries on Replica sequences.

Figure 20. (Continue) Comparison of 3D localization by queries Replica sequences.

