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Figure 1. Comparison of our ground truth trajectory with

COLMAP and Vicon MoCap system. Our ground-truth has bet-
ter accuracy than COLMAP.

1. Sensor Setup Details

To record the RGB and depth data, the ZED X camera re-
quires hardware that can support high data throughput. We
utilize the NVIDIA Jetson Orin NX along with a GMSL2
Fakra cable to serve this purpose. The NVIDIA Jetson
requires a dedicated power source to read data from the
ZED X camera. However, the camera rig also needs to be
portable and functional in a variety of indoor and outdoor
environments, making it infeasible to keep the NVIDIA Jet-
son plugged into a power outlet at all times during record-
ing. As a result, we used an external, rechargeable battery
pack and soldered together a new power adapter to connect
it to the NVIDIA Jetson. We then secured this setup, along
with an external SSD, to a laser cut acrylic board to prevent
components becoming loose while recording. We placed
the acrylic board into a backpack with a small opening at

the top for the GMSL?2 Fakra cable to connect to the camera
outside the backpack. See Main Paper Fig. 3 for a picture
of the setup.

2. Bundle Rig PnP

Formally, Bundle Rig PnP minimizes the sum of reprojec-
tion errors across all cameras and time as
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where T7,  , is the pose of the rig at time ¢, and T, is the
relative pose between the rig and camera ¢, which does not
change with respect to time.

This is a general formulation that can handle multiple
cameras. In our case, we just need to estimate the pose
between two different views. Therefore, we directly opti-
mize the relative pose between the ground-truth view and
the user-view, which is equivalent to taking the rig to be the
ground-truth view and having only one camera, which is the
user-view. See the Sec. 3 for this particular optimization ob-
jective we use.

Note that we also calibrate the relative pose between the
360° camera and the stereo camera using Bundle Rig PnP.

3. Bundle Rig PnP for two cameras

As promised, we give the full expression for the Bundle
Rig PnP optimization objective for the case of two cameras.
We first remind that the general expression minimizes the
reprojection error over all cameras while optimizing over
the relative pose between the cameras and the rig:
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Taking the rig coordinate system to be the ground-truth
view (camera 1) coordinate system, we have the optimiza-
tion objective for the special case
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which gives us the relative pose between the user view and
the ground truth view denoted T'j,. We use this optimiza-
tion objective when we estimate the relative pose between
the ground truth views and the user views. We run the the
optimization for each rendered user view.

To

T, T

4. Ablation Study

4.1. Camera Pose Initialization

Here we explain the three camera pose initialization meth-

ods shown in Main Paper Tab. 7. For all of these, we assume

that the pose graph is already constructed, and the question
is how to use multiple boards seen in a single frame. See
supplemental for more details.

* Method 0: For each board in the frame, we compute the
relative pose between the camera and that board using
PnP. We return the pose of the camera as the pose com-
puted from the closest board.

e Method 1: We apply a confidence-weighted fusion ap-
proach. Since the camera sees several boards at once,
we assign a confidence score to each detected board pose
based on reprojection error and the number of markers
detected. Lower reprojection error signals a more accu-
rate pose. At frame ¢, we weight each board’s pose by its
re-projection error.

* Method 2: We use the idea of multiboard-PnP described
in Main Paper 4.3.2. We estimate each frame’s camera
pose by combining all the visible checkerboards, trans-
forming their inner 3D points into a common reference
using the pose graph, and then performing a PnP estima-
tion with multiple points.

4.2. Complete Ablation Study

In Tab. 1, we report the complete ablation study, which
shows the effectiveness of each of the components of our
Princeton365 ground truth method and externally validates
it with respect to MoCap ground truth. We observe that the
optimal configuration for our ground truth system is when
pose graph optimization and snapping are enabled, the fi-
nal pose is multi-board PnP, Bundle PnP is applied and the
board pose graph is constructed from a video filmed at close
distance. Thus, we choose this configuration to calculate the
ground truth for the Princeton365 benchmark.

In this experiment, we estimate the camera trajectory us-
ing both our Princeton365 method and a Vicon Motion Cap-

ture system in order to measure the accuracy of the Prince-
ton365 method with different configurations enabled. The
MoCap system estimates the pose of an object coordinate
system built from the positions of reflective markers in view
of the MoCap cameras. Thus, we place reflective MoCap
markers on our camera rig in a fixed position. We then
calibrate the relative pose between the marker object and
the camera coordinates using Perspective-n-Point where we
film a Vicon Active Wand with both the MoCap cameras
and the 360-camera rig. This allows us to estimate the rel-
ative pose between the wand and the 360-camera, as well
as the pose between the wand and the MoCap coordinates.
Thus, we obtain the pose of the 360-camera in MoCap coor-
dinate system. We measure the accuracy of our ground truth
based on the Average Trajectory Error (ATE) with respect
to the MoCap trajectory.

We observe that the filming distance to calibration
boards matters considerably in terms of the accuracy of our
ground truth. In practice, this is the distance of the camera
rig to the ground since we set up the boards on the ground.
‘We observe that the board pose graphs built from videos that
are filmed at a close distance (40-70cm) have lower ATE
than those that are filmed at a medium distance (70 -150cm).
For instance, in the 16 board setting where Snapping, Pose
Graph Optimization and Multi-Board PnP are enabled, the
close filmed pose graph - medium distance filmed frame has
an ATE of 2.6 mm whereas the medium distance filmed
pose graph - medium distance filmed frame has an ATE
of 3.2 mm. Note that when collecting the Princeton365
benchmark, we film the calibration boards at a close dis-
tance to construct the pose graph, whereas we film the ac-
tual video that SLAM and COLMAP methods are evaluated
on at varying distances to increase the diversity while pre-
serving accuracy.

Pose graph optimization significantly improves the ac-
curacy of our ground truth. This configuration makes the
global board poses consistent with the relative measured
poses between them. It almost halves the ATE when com-
pared the same settings with pose graph optimization dis-
abled. For example, in the 16 board C-C filming the ATE
goes from 7.1 mm accuracy to 3 mm accuracy when pose
graph optimization is enabled. Thus, we always enable pose
graph optimization when obtaining the ground truth for the
Princeton365 benchmark.

Snapping improves accuracy when the coplanarity as-
sumption holds. This technique snaps the poses of the cali-
bration boards to the same plane under the assumption that
the boards are coplanar. For instance, with 16 boards and
C-M filming and optimal configurations, the ATE goes from
7.0 mm to 6.5 mm when snapping is enabled. Note that we
ensured that the boards are actually coplanar using a bubble
level in this experiment. In general, we only enable snap-
ping in Princeton365 benchmark when calibration boards



are coplanar.

Final Pose indicates the method we use to calculate
the ground-truth pose of the frame when constructing the
Princeton365 trajectory, before applying the Bundle PnP. At
most frames, the ground truth view of the 360-camera will
see multiple boards.

* Method 0 calculates the pose of the frame only with re-
spect to the closest board using PnP.

* Method 1 performs PnP with respect to each board and
combines the estimated poses using a weighted average
where the weights are determined by the reprojection er-
rors. Specifically, we apply a confidence-weighted fusion
approach. Since the camera sees several boards at once,
we assign a confidence score to each detected board pose
based on reprojection error and the number of markers
detected. Lower reprojection error signals a more accu-
rate pose. At frame ¢, we weight each board’s pose by its
re-projection error:
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Additionally, we set the confidence proportional to the
number of markers detected on the board. We compute
confidence as:

_ Number of Markers Detected on Board,;

w@
rum Total Numbers of Markers
3)
Combining 2 and 3 we define the total confidence as:
Wiotat = Wiepros Wi )

In order to determine the final camera pose, we calculate
a weighted average of each detected board pose based on
their confidence scores. Since the pose of a camera is
represented by a translation vector ¢ and a rotation matrix
R, we can compute them separately. The final translation
t final 1S given by:

trina = > W T (5)

For the final rotation, we compute the weighted average
of quaternions [, 3].

e Final Pose 2 method identifies the markers on every
board, transforms them to a single coordinate system and
performs a single multi-board PnP to estimate the pose
of the frame. We find this multi-board PnP method to be
the most accurate configuration. For instance, the ATE
with 8 boards, C-M filming decreases from 8.1lmm —
6.8mm — 5.5mm as we change the configuration closest
board — weighted average — multi-board PnP.

We can further see the effect of these modifications in 2
Finally, we get the final camera poses by using the Bun-
dle PnP. This optimization technique further improves the

results. In general, more boards lead to a better pose since
there are more points detected per frame. As shown in Table
1, even with only 10 boards, applying Bundle PnP leads to a
lower ATE (2.1 mm) than using 16 boards without this opti-
mization (2.5mm). In Fig. 6 we can see more results of our
ground truth trajectories with the optimal settings compared
to MoCap.
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Table 1. Ablation Study. This figure summarizes the effects of
various configurations on ATE compared to MoCap. The number
of boards is the number of ChArUco boards in the ground truth
pose graph. The Filming distance indicates how far the camera
rig is from the calibration boards where C stands for close (40-
70cm) and M stands for medium (70 -150cm). Combination X-
Y means that the pose graph is constructed from a video filmed
X distance away and the trajectory is constructed from a video
filmed Y distance away. Pose graph optimization makes the global
board poses consistent with the relative poses between the boards,
snapping encodes an assumption that the boards are all coplanar,
and final pose indicates the method we use to get the ground truth
pose of a frame.

5. Calibration Boards

-

Fig. 3 shows the calibration boards used in the Prince-
ton365 benchmark. We evaluated two types of fiducial-
based calibration patterns: ChArUco boards and Grid-
Boards. ChArUco boards are a combination of ArUco
markers and chessboard, enabling subpixel corner refine-
ment while retaining marker-level identification [7]. Grid-
Boards, on the other hand, are a structured grid of ArUco
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Figure 2. Comparison of our ground truth trajectory with MoCap.
The figure illustrates the progressive reduction in ATE and stan-
dard deviation, while combining Pose Graph Optimization and/or
Snapping. The combined approach achieves the best alignment to
the ground truth trajectory.

markers without using the chessboard layout. Thus, using
the same paper size, GridBoards can contain larger quantity
and size of Aruco markers compared to a Charuco board, of-
fering robust detection across a broader range of viewpoints
and lighting conditions, though without subpixel refinement
[6].

In order to evaluate the accuracy of both board types,
we placed several ChArUco boards and GridBoards side
by side and recorded a single trajectory. At the same time
we used MoCap system for ground truth. From the same
recording, we extracted two separate trajectories—one us-
ing only ChArUco board detections and one using only
GridBoard detections. Comparing both to the MoCap
ground truth, we found that the trajectory estimated with
GridBoards resulted in lower ATE as shown in Table 2.

Calibration Board ATE (mm)

ChArUco Board 1.6
GridBoard 1.1

Table 2. Comparison of ATE for ChArUco and GridBoard using
MoCap. GridBoard achieves lower ATE for the same trajectory,
indicating higher trajectory accuracy.
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(b) GridBoard

(a) ChArUco Board
Figure 3. Two types of fiducial calibration boards used in our
benchmark: ChArUco and GridBoard. Each marker has a unique
ID for pose estimation and pose graph construction.

6. Depth Distribution

The ZED X stereo camera returns pixel-wise depth values
per frame. Since we want to compute the induced optical
flow, one option would be to compute the induced flow di-
rectly using these depth samples. We instead fit a parametric
distribution to these depth samples. This approach has a few
advantages. Firstly, it is more robust to outliers, noise, and
low amount of samples. More importantly, a parametric dis-
tribution allows us to have an analytical expression for the
expectation of the induced optical flow. If we wanted to use
depth samples directly, we would have to use a Monte Carlo
estimate of the expectation.

We fit the parametric depth distribution as follows. We
take the depth samples for each frame of a sequence and
concatenate them. Then, for every number of compo-
nents from 1 to 8, we fit mixture of Gaussian and mixture
of gamma distributions with that number of components.
The reason for including the gamma distribution is because
depth distributions are positive and the components tend to
be skewed, which are properties satisfied by the Gamma dis-
tribution. Since higher the number of components, higher
the likelihood, we need to balance the complexity of the
distribution with the goodness of the fit. Thus, we take the
best fitting distribution as measured by the Bayesian Infor-
mation Criterion (BIC) [8].

An example of the fitting process for the parametric
depth distribution is shown in Fig. 5. We show a histogram
of a depth distribution, a comparison of the best mixture of
Gaussian and mixture of Gamma fits, as well as the BIC
selection process.

7. Pose Graph Optimization

We want construct a pose graph where nodes represent
global board poses {T5:} and edges represent measured



relative poses Tgf between boards ¢, j. The goal is to esti-
mate a set of global poses { T2} such that the relative pose
computed from them matches the observed local transfor-
mations:

Tfi—lej ~ Tgf (©6)

The optimization is the following:
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where Log : SE(3) — se(3) maps a pose to its 6-D Lie-
algebra vector, and ij is the information matrix for the
measurement (4, j). We compute this using g20[4].

8. Validation of Bundle Rig PnP

In this section, we show that the estimated relative pose be-
tween the user view and the ground truth view is accurate.
The idea is to move the camera in two different trajectories,
run Bundle Rig PnP to estimate a relative pose for each tra-
jectory, and compare the two relative poses to make sure
that they are consistent. If Bundle Rig PnP works well, the
two estimated poses should be the same since the views are
fixed.

We set up 8 different board configurations where the
boards are placed so that both views can see boards at
the same time. For each configuration, we film two se-
quences with different trajectories. We render the ground-
truth view and the user-view with fixed relative pose for
both sequences. Note that for each configuration we ren-
der different relative poses used in the benchmark to ensure
that all of them are accurate. We then run Bundle Rig PnP to
estimate two relative poses, one for each sequence. Finally,
we compare the poses to each other in terms of translation
and rotation difference.

The results in Tab. 3 show that the rotation difference
between the two estimated poses is 0.070° on average, and
the translation difference is 0.89 mm on average. Thus, we
conclude that the relative pose between the user-view and
the ground-truth view is accurate.

9. Bundle Rig PnP outperforms regular PnP

In this section, we show that Bundle Rig PnP calibration
outperforms naive PnP when estimating the relative pose
between the user-view and the ground-truth view.

To evaluate naive PnP, we placed reflective markers that
can be seen by both MoCap and the user-view of Insta360.
We annotate the 2D pixel position of each marker for multi-
ple frames. Running PnP gives us the relative pose between
user-view and the markers we have placed. Since the po-
sition of the markers can be tracked by MoCap, we obtain
the pose of the user-view in MoCap coordinates by chain-
ing poses together. We use this to obtain the fixed relative

Experiment Rotation Diff. (deg) Translation Diff. (mm)

1 0.0712 1.04
2 0.0447 0.51
3 0.0543 1.08
4 0.0792 1.04
5 0.0576 0.39
6 0.0894 1.16
7 0.0814 1.32
8 0.0974 0.59

Mean 0.0705 0.891

Table 3. Relative pose differences for 8 cases using Bundle Rig
PnP. It shows that the estimated relative pose between the user
view and the ground truth view remains consistent across different
trajectories. Thus, we conclude that the relative pose calibration is
accurate.

pose between the Insta360 body (constructed from reflec-
tive markers placed on Insta360) and the user-view. We
perform a similar process to obtain the relative pose be-
tween the ground-truth view and the Insta360 body. Hence,
we obtain the relative pose between the user-view and the
ground-truth view through just using PnP.

How does this naive approach compare to Bundle Rig
PnP? Since we cannot obtain the relative pose between the
two views through an external measurement, we have to
rely on internal validation for comparison.

We measure the variance of the estimated relative pose
between the ground-truth view and the user view of the 360
camera by using a bootstrapping approach. We take all the
2D-3D correspondences used in the PnP calculation of the
relative pose, and we resample with replacement to recalcu-
late the relative pose. We construct a histogram of the trans-
lation and the rotational distance from the original relative
pose performing 10,000 Monte Carlo trials. Fig. 4 shows
the that the variance of the poses obtained by naive PnP is
significantly higher than the variance of the poses obtained
by Bundle Rig PnP. In particular, note that a large portion
of the rotations of Naive PnP in Fig. 4 fall higher than 2 de-
grees in stark contrast to the average rotation difference of
0.07 deg obtained by Bundle Rig PnP shown in Tab. 3.

10. Further GT validation with MoCap

As mentioned in Main Paper Sec. 5, we validate our
ground-truth pipeline with a Vicon Vantage V16 MoCap
system. However, MoCap does not work outdoors. As a
result, all validation sequences in Main Paper Tab. 5 have
been recorded indoors. The indoor and outdoor sequences
are not significantly different from a ground-truth perspec-
tive since the ground-truth view films calibration boards on
the ground in both cases where the main difference is the
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Figure 4. Histograms of both distance and angle variation obtained
via bootstrapping Naive PnP. We observe that Naive PnP is not as
reliable as Bundle Rig PnP when it comes to estimating the rela-
tive pose between the user-view and the ground-truth view. The
histograms show high variance for the naive PnP estimates. Dif-
ference in distance is given in meters and the difference in angle is
given in degrees. A total of 10,000 trials were conducted.

indoor vs outdoor lighting. However, we still perform fur-
ther experiments to make sure that the indoor ground-truth
validation generalizes to outdoor sequences as well.

We measure reprojection errors coming from Bundle
PnP for both indoor and outdoor sequences. The ground-
truth accuracy, as measured by reprojection error, appears
consistent across indoor and outdoor environments, where
the average indoor reprojection error is 0.7373 px and the
average outdoor reprojection error is 0.7394 px. We use the
Welch’s t-test to test if there is a statistically significant dif-
ference between the two cases. The difference between in-
door and outdoor averages is 0.0021 px where the 95% con-
fidence interval for the difference is [-0.0175, 0.0217] and
the p-value is p=0.832, meaning that the difference mea-
sured is not statistically significant. As aresult, we conclude
that the validation experiments showing that our ground-
truth is mm accurate generalize to outdoor sequences as
well.

11. Computing Induced Optical Flow

Recall that the IOF metric can be written as
1 o0
IOF = —— Z:;/O |Aow (t,d,u,v)|, p(d) dd

We sample (u, v) over a uniform grid of pixels in the image
denoted A. After fitting the parametric depth distribution
p, we calculate minimum and maximum depth values for
this distribution. For the mixture of Gaussians, the d,,,;,, is
calculated as the value 4 standard deviations smaller than
the mean of components. We take the smallest value over
all components. d,,,, is calculated as the value 4 standard
deviations higher than the mean of components. Again, we

take the largest value. Thus, we write the IOF metric as

ATZZ/

Assuming we have calculated ||flow (¢, d, u, v)||,, the in-
ner integral can be numerically integrated.

Now, we talk about how to calculate flow (¢, d, u, v). We
denote the trajectory collected by our ground truth method
as T, t) € SE(3) and the trajectory estimated by the SLAM
method as T!) € SE(3).
timestamp of the trajectory.

We take K to be the 4 x 4 Camera Intrinsic Matrix in
Homogeneous Coordinates:

[flow (. d.u.v)]|, p(d) dd.

dmin

Here ¢ denotes the frame or
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where f,, f, are the focal lengths in the u and v directions
(pixels), and c,,, ¢, are the principal point coordinates.
We denote a pixel sampled in the ground truth trajectory

g)(u )" This can be written in homogeneous
(t)

coordinates with inverse depth Plu,v) 3

at frame ¢ as p

U
(t) v
gt (u, 'u) 1 ’
(®)
P(u.v)
where the depth comes from the numerical integration over
the depth distribution.
The re-projection of Pg)(u )
trajectory can be calculated as:

to frame ¢ of the estimated

P(t)

est,(u,v

() (t) 1 (t)
)= =KTe Ty K™ 'p ot (u,0)"
where we unproject the pixel, transform it using the relative
pose between the estimated and ground truth frames, and
reproject it to the estimated frame. The induced flow is the
difference between inhomogeneous coordinates:

(®) )

flow(t,d, u,v) = Pest,(u,0) ~ Pat (u,0)"

12. Trajectory Alignment Details

In this section, we denote frames with ¢ to avoid confusion.
Decomposing the 6 DoF pose T(¥) into the rotation R(*) ¢
SO(3) and translation t() € R®, we can write the initial
Sim(3) alignment of the translation part as

T
: (1) (i
min sRt,, +t—t
s€R+, RESO(3), teR3 ; H est gt



We can write the optimization objective for the sec-
ondary alignment on the orientation of the estimated tra-
jectory as

T
min E
Ralign GSO(S)

i=1

2
. . \Y
10g (Ralign Rg:t) (Rg))T)

We perform both optimizations using SVD.

13. Coverage and Composite Score

A lot of SLAM methods do not output poses for the whole
sequence. For example, ORB-SLAM [5] will take a while
to initialize. This means that first couple of hundred frames
will not have a pose. Also, SLAM methods might fail on
certain sequences, meaning that they will not output any
pose for that sequence.

This creates a precision and recall issue. If we report
Flow AUC computed only from frames that have a pose,
then models that output only a few poses with high confi-
dence are rewarded, punishing robust methods.

What if we forced the methods to output the same exact
number of frames as our ground-truth, a strategy followed
by benchmarks like KITTI [2]? In that case, a method
would have to pad its gaps with pose guesses. For instance,
some methods fill in the gaps with the closest available es-
timated pose. This strategy will cause disproportionately
low Flow AUC when poses for certain frames are missing.
Also, the strategy does not handle the case when a method
completely fails on certain sequences.

Our solution is to create a composite score from Induced
Optical Flow Metric, and tracking coverage. Tracking cov-
erage is roughly for what percent of frames there is an esti-
mated pose. It can be thought of as a measure of recall. In
particular, we compute

#frames predicted
#frames total

coverage =

Note that coverage includes failed sequences as well.
Furthermore, coverage has the same range as Flow AUC
where both metrics range from 0% to 100%. This allows us
to easily combine the two scores.

The composite score, then, is the harmonic mean (f-
score) of Average Flow AUC and coverage, which is similar
to f-score computed from precision and recall:

2
_1 41
AUC,g coverage

composite =

Thus, we sort our leaderboard using the composite score
by default. This rewards methods that are both accurate and
robust.

14. Experimental Setup

In our evaluation Table Main Paper Tab. 6, we ran DPVO
and DPV SLAM with their default settings, processing all
sequences at stride 1. As for LEAPVO, we also used the
default configuration for the scanning sequences at stride
1. However, we used stride 10 for the indoor and outdoor
scenes since increasing the buffer size for longer sequences
still resulted in failures. Lastly, we ran COLMAP at stride
1 with default parameters and sequential match, without in-
trinsic refinement. We assumed that if a sequence needs for
processing more than 2days and 16h will be considered as
failure.

15. Rig Construction

Regarding the rig construction, we mounted the Insta 360
camera and the ZED camera using a smallrig Clamp along
with a 9.8-inch Adjustable Friction Power Articulating
Magic Arm. This setup allowed us to adjust the align-
ment of both cameras, so as the Insta360’s user view closely
matches with that of the ZED one. Once we finalized an
acceptable configuration we also applied epoxy glue to the
joints, in order to ensure that the relative pose between the
ZED and 360 camera remained stable. Epoxy is a high-
strength structural adhesive, which provides extra stability
beyond the clamp itself. The complete rig setup can be seen
in Main Paper Fig. 3.

16. NVIDIA Jetson Optimizations
16.1. Hardware Tuning

Before achieving maximal data recording frequencies for
RGB or IMU data by themselves, we needed to perform
additional hardware-related optimizations for the NVIDIA
Jetson. These optimizations are crucial, as they introduce
about a 3x frequency increase just by themselves.

The first optimization involves nvpmodel, which
forces the NVIDIA Jetson to draw maximal power from
its power source. This ensures the camera is receiving the
most amount of power it is designed to handle, and thus can
record at maximum frequency.

The second optmization involves jetson_clocks,
which sets static max frequency to CPU, GPU, and EMC
clocks on the NVIDIA Jetson. This ensures that the Jetson’s
compute resources are being utilized to their maximum po-
tential when recording data.

By combining these different hardware optimizations to-
gether, we are able to achieve 60 FPS video recording by
itself, or 400 Hz IMU data recording by itself.

16.2. Software Parallelization

Although RGB video and IMU data can be collected at their
respective maximum frequencies when recording by them-



selves, new difficulties arise when trying to record both
RGB and IMU together. We looked towards techniques in
parallel computing to try and preserve maximal data record-
ing frequency. The primary methods we looked into are
multiprocessing and multithreading.

Both multiprocessing and multithreading strive to im-
prove total processor performance and therefore position
themselves to decrease the processing time for any applica-
tion that exposes concurrent software threads for execution.
The two technologies however take different approaches in
the hardware to address these goals and will subsequently
offer different levels of success for any particular example
of software code.

* Multithreading refers to the ability of a processor to ex-
ecute multiple threads concurrently, where each thread
runs a process.

* Multiprocessing refers to the ability of a system to run
multiple processors in parallel, where each processor can
run one or more threads.

Multithreading is beneficial for IO-bound tasks, such as
reading files from a network or database, because it allows
each thread to concurrently execute these processes. In
contrast, multiprocessing is more suitable for CPU-bound
tasks that require substantial computational resources, as it
can utilize multiple processors, mimicking the efficiency of
multicore systems.

There is a clear distinction between concurrency and par-
allelism: concurrency involves executing multiple tasks in
an interleaved manner, one at a time, whereas parallelism
involves executing multiple tasks simultaneously.

Python’s global interpreter lock (GIL) restricts multi-
threading to executing only one thread at a time, meaning
that it only offers concurrency, not parallelism, particularly
for I0-bound processes. However, multiprocessing enables
parallel execution.

Using multithreading for CPU-bound tasks can degrade
performance, due to the limited execution capabilities under
the GIL and the overhead associated with managing multi-
ple threads.

Although multiprocessing can be applied to IO-bound
processes, it generally incurs greater overhead than multi-
threading. Yet, it can lead to increased CPU usage, which is
expected given that multiple CPU cores are engaged by the
application.

Throughout our experimentation with the ZED X cam-
era to optimize data synchronization and processing, we
found out that although multiprocessing allowed parallel
data handling, it introduced blocking issues that reduced
IMU performance. Multithreading improved responsive-
ness and IMU capture rate by reducing overhead, offering a
more continuous data flow.

17. Estimation of Distance Covered

In Main Paper Tab. 3, we provide estimated total distance
covered and distance covered with ground-truth pose. We
calculate posed distance by summing up the length of the
ground-truth trajectories. To estimate the total distance cov-
ered, we need an estimation of the distance covered for
frames that do not have a pose. Since the IMU uncertainty
compounds quickly it is an unreliable estimate. Thus, we
assume an average walking speed of 1.4 m/s and multiply
that with the total duration of frames without pose. This
assumption roughly holds in practice since for almost all
sequence portions without pose, we travel with the camera
at walking speed.

18. Dynamic Objects

Examples of dynamic objects in our sequences include peo-
ple walking and cycling, cars passing by, snow, water foun-
tains, rotating chairs, deformable objects, doors opening,
etc. We blur the faces of people as well as the license plates
of cars.
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Figure 5. An illustration of the parametric model we fit to the depth data. The figure shows fitted distributions, BIC scores for model
selection, individual components, and summary statistics of the depth data.
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Figure 6. X and Y comparison of six different trajectories as measured by MoCap and the 360 camera.
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