
Supplementary material
To complement the main paper, this supplementary material
assembles additional results, analyses, and implementation
details. Sections A and B provide additional qualitative vi-
sualizations and expanded quantitative metrics, respectively.
Section C discusses the model and data limitations. Sec-
tion D reports comprehensive dataset statistics. Section E de-
tails the GROVE architecture and training setup, while Sec-
tion F describes our automatic annotation pipeline. Section G
outlines the human-annotation protocol, and Section H lists
the exact prompts used to curate spatio-temporally grounded
captions.

A. Additional qualitative results
Figures 8 and 9 show qualitative results of our GROVE
model (Section 4 in the main paper), pre-trained on the
HowToGround1M dataset and finetuned on the iGround
training set (2013 examples). The results are shown on
the iGround test set. In the figures’ captions we discuss
some of the benefits of our model. Additional qualitative
results showcasing the predictions of our approach over-
laid over the input videos are shown in the supplementary
video (available at https://ekazakos.github.io/
grounded_video_caption_generation/). Fig-
ure 10 shows the main failure modes of our model.

B. Additional quantitative results
Detailed analysis for the ablations of automatic annota-
tion. We replace each stage of our automatic annotation
method with an alternative. Results are shown in Table 7
in the main paper. In Stage 1, we replace the still-image
model [32] with an alternative still-image grounded cap-
tion generation method. This approach leverages GIT [42]
for frame-level captioning, Llama3 [9] for extracting noun
phrases from the caption, and OWLv2 [25] for their bound-
ing box localisation within each frame. We call this alter-
native “b. Alt. Stage 1 (F)”. We also evaluate a video-level
variant “c. Alt. Stage 1 (V)”, where we replace the GIT
captioner with VideoLlama3 [46]. To ablate Stage 2 (“d. Alt.
Stage 2”), we provide the LLM with full captions from Stage
1 instead of extracting Subject-Verb-Object triplets from the
caption to assess the impact of additional context. To ablate
Stage 3 (“e. Alt. Stage 3”), we incorporate CoTracker3 [15],
a SOTA visual point tracking method to provide temporal
association of bounding boxes across frames. Using 5 uni-
formly sampled frames and their bounding box predictions
from Stage 1, we track objects in between with CoTracker3
and associate the resulting tracks with noun phrases from
the caption.

Results are reported in Table 7 in the main paper, where
we compare the alternative automatic annotation methods on
the iGround validation set. The frame-level alternative Stage

1 (row b.) performs better in captioning due to GIT’s superior
performance but performs noticeably worse for grounding.
This is because our Stage 1 still-image grounding model [32]
is explicitly trained for grounding, unlike GIT, Llama3, and
OWLv2, which are not trained jointly and may underper-
form due to various factors–such as Llama3 extracting non-
groundable noun phrases or OWLv2 missing objects. A
similar trend is observed for the video-level alternative Stage
1 (row c.). Compared to our proposed method, the alternative
Stage 2 (row d.) underperforms across all metrics except
AP50. This is because the full-caption input yields fewer
predictions as the LLM trims its output to the most salient
objects, reducing recall but improving precision–hence the
slightly higher AP50. In contrast, the SVO-based input in
our proposed automatic annotation method leads to slightly
longer captions (12 vs.11 words) with more noun phrases
(3.3 vs. 3.0), leading to more object predictions and higher
recall. This reflects a typical precision-recall trade-off. The
alternative Stage 3 (row e.) underperforms in grounding due
to tracker drift caused by abrupt viewpoint changes. Overall,
on average (the last column in Table 7 in the main paper),
our proposed method achieves the best performance.
Comparison with the state of the art on YouCook-
Interactions and GroundgYouTube datasets. In Table 8,
we evaluate GROVE on YouCookInteractions and Ground-
ingYouTube datasets, outperforming the previous SOTA by
large margins.

Method YouCook-Interactions GroundingYouTube
What When and Where (S3D) [4] 53.98 60.62
What When and Where (CLIP) [4] 58.35 56.98
GROVE 68.67 72.14

Table 8. Comparison with SOTA on YouCook-Interactions [38]
and GroundgYouTube[4] datasets.

C. Limitations
Although our proposed datasets and model advance the state
of the art in grounded video captioning and spatio-temporal
sentence grounding, they also reveal avenues for future ex-
ploration, stemming from the following limitations.
Scaling to long videos. Despite achieving state-of-the-art
results on VidSTG by running inference in a sliding-window
manner over videos up to three minutes, the training phase
remains memory-bound: we can supply the model with only
eight frames per clip. This is sufficient for the short clips
in HowToGround1M and iGround (8-10 seconds), where
eight frames corresponds to about 1 fps sampling. For Vid-
STG’s much longer videos, however, uniform sampling of
only eight frames introduces large gaps between frames and
prevents the model from seeing fine-grained temporal depen-
dencies during training. Closing this discrepancy will require
methods that can train directly on larger frame spans or more

https://ekazakos.github.io/grounded_video_caption_generation/
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Method METEOR CIDER AP50 Recall

A
ll Auto. annotation 12.3 31.7 26.9 19.3

GROVE 19.7 92.6 42.0 26.9

H
ar

d Auto. annotation 08.1 07.3 22.3 14.7
GROVE 14.4 41.3 36.0 18.9

Table 9. Results of our automatic annotation method (Auto. anno-
tation) and the complete proposed model (GROVE) on the entire
iGround validation set (All) and for a subset (about 10% of data)
with challenging similar referring expressions (Hard).

efficient representations of extended temporal context (e.g.
memory).
Complex referring expressions. We examined the iGround
validation set and discovered that roughly 10% of its videos
contain more than one object whose referring expressions
(and appearance) are highly similar. We designate this chal-
lenging portion of the data as the “Hard” subset. In Table 9,
we compare GROVE with our automatic annotation method
in this subset. Although GROVE still surpasses the auto-
matic annotation method on this subset, the marked drop in
performance of both methods on the “Hard” subset (compar-
ing to “All”, i.e. the full validation set) reveals that reliably
disambiguating closely related referring expressions remains
still a challenge. These results suggest opportunities to refine
both the model architecture and the automatic annotation
method to better handle such fine-grained cases.

D. Dataset Statistics
Table 10 reports the statistics of both the HowToGround1M
pre-training dataset and the iGround manually annotated set.
Word clouds of the natural language descriptions from those
datasets are shown in Figure 7.

Statistic HowToGround1M iGround

Avg num frames per video 44.6 40.1
Avg duration (seconds) 7.9 8.0
Avg num instances per video 80.1 118.1
Total num instances 80,092,775 421,588
Avg box width → height 243.7 → 172.6 174.9 → 135.5
Avg tube length (frames) 6.4 29.0
Avg caption length (words) 12.1 15.4

Table 10. Statistics of HowToGround1M and iGround datasets.

E. Details of the GROVE model
Model architecture. Figure 3 in the main paper shows the
different components of our approach. The Global Video
Encoder, Ve(·), outputs video features, oe, which are pooled
spatio-temporally, resulting in the video prompts. These are
projected to a language embedding space with V L(·). The
LLM, LM(·), ingests a multimodal prompt consisting of

(a)

(b)

Figure 7. Word cloud for (a) HowToGround1M dataset and (b)
iGround dataset.

video and language tokens. The LLM is prompted to gen-
erate a caption for the video by tagging the noun phrases
that correspond to objects and appending them with detec-
tion tokens (shown with red and green in the LLM’s gen-
erated caption in Figure 3 The LLM’s output hidden states
that correspond to the generated caption are projected to
queries (using LQ(·)). The queries corresponding to the de-
tection tokens are fed to the bounding box decoder D(·). The
Grounding Video Encoder, Vg(·), outputs fine-grained video
features, which are also fed to the decoder. The decoder
performs cross-attention frame-wise between the queries
and the outputs of Vg(·), og, which are used as keys/values.
Finally, the prediction heads output bounding box predic-
tions and temporal objectness scores for each object at each
frame. This objectness score is used to predict the pres-
ence/absence of the object in each video frame and is of
major importance for the grounded video caption generation
task. Details about the visual backbones Ve(·) and Vg(·) as
well as details about the LLM LM(·) including the format
of its multimodal inputs and its vocabulary are given next.
Projection layers. We project the outputs of the Global
Video Encoder and the output hidden states of the LLM
with MLPs, op→ = V L(op) and oq = LQ(ol), where V L(·)
projects the visual features to an embedded language space,
while LQ(·) projects the LLM’s hidden states to queries. op→

is the LLM’s visual input while oq is input to the bounding
box decoder that is described next.



Figure 8. Qualitative results of our GROVE model on the (unseen) iGround test set. The colour-coded sentence fragments are spatio-
temporally localised in the video with the bounding boxes colour coded with the same colour. The results demonstrate that: (i) our model can
localise even small objects such as a pen or a tooth brush; (ii) objects are consistently labelled across frames despite changes of viewpoint or
scale; (iii) the model focuses on the human and the interacted objects; (iv) the model can successfully ground multiple objects in the video.
Additional results are shown in the supplementary video (available at https://ekazakos.github.io/grounded_video_
caption_generation/).

https://ekazakos.github.io/grounded_video_caption_generation/
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Figure 9. Additional qualitative results of our GROVE model on the (unseen) iGround test set. The colour-coded sentence fragments are
spatio-temporally localised in the video with the bounding boxes colour coded with the same colour. In addition to the model’s properties
discussed in Fig. 8, GROVE is capable of predicting whether an object is present in a certain frame via the temporal objectness head; in
the second example there are no bounding box predictions for the hand in the first three frames while in the fourth example there are no
predictions for the hand and the screwdriver in the second and fifth frame. Additional results are shown in the supplementary video
(available at https://ekazakos.github.io/grounded_video_caption_generation/).

https://ekazakos.github.io/grounded_video_caption_generation/


Figure 10. Qualitative results for the main failure modes of our GROVE model on the (unseen) iGround test set. The colour-coded
sentence fragments are spatio-temporally localised in the video with the bounding boxes colour coded with the same colour. We identify
four main failure modes: (i) temporal objectness mispredicts the presence of an object (first row, last frame for the knife), (ii) inaccurate
predictions of object location (second row, third and last frames for the spatula), (iii) misclassification of object (third row, model predicts
“radish” for the pumpkin), and (iv) misclassification of action (last example, model predicts “watering” for planting).

Backbones. GROVE consists of two video encoders and a
multimodal LLM as its main backbones. The Global Video
Encoder Ve(·), takes as input a video v ↑ RT→H1→W1 and
produces an output oe ↑ RT→H1

p
→W1

p , where p is the patch
size of the underlying visual transformer. Its purpose is to
provide a holistic representation of the video that will be
ingested by the LLM. The Grounding Video Encoder Vg(·),
takes as input a video v ↑ RT→H2→W2, where W2 > W1

and H2 > H1. It produces og ↑ RT→H2
p

→W2
p . og is used

to ground phrases from the caption to the visual content,
which is performed by the bounding box decoder that is
described later. The input video to the Grounding Video
Encoder is of larger spatial resolution than that of the
Global Video Encoder for enhanced localisation capability.
Finally, the LLM LM(·) takes as input a multimodal
sequence s ↑ RL→D and produces an output ol of the same
size. Its input is of the form The <video> provides
an overview of the video. Could you
please give me a description of the
video? Please respond with interleaved
bounding boxes for the corresponding
parts of the answer. <video> is replaced by
the output of Ve(·), and therefore the LLM ingests mixed

language and visual tokens. We also augment the LLM’s
vocabulary with a detection token <DET>, prompting the
model to generate responses with <DET> tokens by the
phrases that correspond to objects to be detected in the
video.

Loss function. Our loss function is a combination of a lan-
guage modelling loss and losses relevant to video object
detection. The language modelling loss is a Cross-Entropy
loss applied on ol. For object detection, we follow DETR [3]
and use a gIoU loss [34] and an L1 loss applied on pbb. Dif-
ferent than [3], the losses are applied per frame and summed
over frames. Moreover, the losses are applied only to the
objects that appear in the frame (rather than each object
in the caption) using the ground-truth temporal objectness
scores. The representation that we use for the bounding
boxes is [x,y,w,h] and their coordinates are normalised
with the dimensions of the video. Finally, we employ a bi-
nary cross-entropy loss on ptobj . Our loss is, hence, defined



as:

LLM = CE(ol) (1)
LgIoU = gIoU(pbb, gtbb) (2)
LL1 = L1(pbb, gtbb) (3)
Ltobj = BCE(ptobj , gttobj) (4)

L = ωLM → LLM + ωgIoU → LgIoU (5)
+ ωL1 → LL1 + ωtobj → Ltobj , (6)

where gtbb are the ground truth boxes and gttobj are the
ground truth objectness scores and ω are the weights for the
losses.
Training/inference. We realise the Global Video Encoder
Ve(·) with a CLIP-L [31] model with an input of 336→336
and a patch size of 14. The Grounding Video Encoder Vg(·)
is instantiated with a SAM [17] encoder and the bounding
box decoder D(·) is a SAM-based decoder, the same as in
GLaMM [32]. The LLM LM(·) is a Vicuna-7B model [7].
During training we keep Ve(·), Vg(·) and LM(·) frozen.
Vg(·) originally takes as input 1024→ 1024 images. As
this is too large to fit in memory for videos, we instead use
512→512 video spatial resolution, while we interpolate the
positional encodings of Vg(·) and fine-tune them. Adapters
are 3D spatiotemporal convolutional layers with a kernel of
size 3→ 3→ 3 and a stride of 1. We apply adapters to every
3 layers of Ve(·) and to all global attention layers of Vg(·).
The bounding box head hbb is an MLP with two FC layers
and a ReLU activation function in between, while the tem-
poral objectness head htobj is a linear layer. Both prediction
heads employ a sigmoid activation function. We apply a
threshold of 0.5 to the temporal objectness scores. Both the
adapters and the prediction heads are randomly initialised.
We use T = 8 frames for the videos during both training and
testing. During training we perform random sparse sampling
of frames by splitting the video in 8 segments and randomly
drawing a frame from each segment while during testing we
pick the centre frame of each segment.

We train GROVE for 20 epochs using a batch size of 128.
We use a learning rate of 5 → 10↑5 with warmup for the
first 100 training steps and linearly decay the learning rate
for the rest of training. We do not apply any weight decay
or spatial data augmentation. We use ωLM = 1,ωgIoU =
ωL1 = ωtobj = 2.

Details of VidSTG and ActivityNet-Entities experiments.
For VidSTG [49] and ActivityNet-Entities [51], we do not
use the temporal objectness head. That is because in Vid-
STG the spatio-temporal tubes are continuous within the
segments’ boundaries, while ActivityNet-Entities provides
annotations for a single frame per object and in the rest of
the frames the objects might still be present but without an-
notation, and thus should not be modelled as absent. As

the task in VidSTG entails predicting the spatio-temporal
bounding boxes given a short description, we provide the
short descriptions as input to our GROVE model during both
training and inference in a teacher-forcing setup. For evalu-
ating GROVE on VidSTG without observing any VidSTG
data during training (GROVE with FT: ✁, Table 4 in the
main paper), we pre-train GROVE on HowToGround1M.
Each HowToGround1M caption is rewritten–by prompting
Llama-3–into both of VidSTG’s sentence styles, declarative
and interrogative. Every transformed sentence is then paired
with a single bounding box per frame, chosen as the box of
the first subject or object it mentions. This supervision re-
shapes HowToGround1M’s annotation distribution to mirror
VidSTG’s, allowing GROVE to achieve strong performance
without relying on any VidSTG training data.

F. Details of the automatic annotation method
Multiple people in the video. Our automatic annotation
method can handle multiple subjects in a video as long as
one of the two following conditions are met: a) the sub-
jects are described with a distinct language, e.g. ‘man with
green jumper’ and ‘man with blue shirt’, or b) the subjects
are within a Subject-Verb-Object relationship even when de-
scribed with the same terms, e.g. (‘person’, ‘dances’, ‘with’,
‘person’) which would produce ‘A person dances with an-
other person’. If neither conditions are met, the caption
aggregation (Stage 2) may merge the two subjects into one.
Association of verbs and objects is naturally performed
through the Subject-Verb-Object triplets. For example, given
two relationships: (‘man’, ‘cuts’, ‘onions’) and (‘woman’,
‘stirs’, ‘food’, ‘in’, ‘pot’). The LLM-based caption aggre-
gation step (Stage 2) has sufficient information to associate
the man with the action of cutting the onions and the woman
with stirring the food.
Additional details of Stage 3. We provide additional details
of the procedure of Stage 3 using the example from Figure 2
in the main paper, right. The object in the woman’s hands is
described as ‘a green beverage’ and ‘a glass of green liquid’
across different frames. Stage 2 has provided the video-
level noun phrases ‘a woman’ and ‘a beverage’. Stage 3 is
formulated as a classification problem where each one of ‘a
green beverage’ and ‘a glass of green liquid’ are the inputs to
be classified in one of the classes {‘a woman’, ‘a beverage’,
↓} and thus associated with the right bounding box. The
class ↓ represents the “None” class, i.e. when an input does
not belong to any of the known classes and it is useful for
noisy inputs.

G. Protocol for human annotations
In Figure 11, we describe the annotation guidelines for anno-
tating the training/validation/test sets of the GROVE dataset.

The annotation criteria have been extensively discussed



Annotation Guidelines:
1. Video Selection:

• You will be provided with a larger set of videos than needed.
• Your first task is to select clips that are considered ‘interesting’ based on criteria that will be discussed further. An

‘interesting’ video typically includes dynamic events or actions that are clear and distinguishable despite the low video
quality. In those events/actions people usually interact with objects, e.g. ‘A man is cutting an onion using a knife’.
‘Non-interesting’ events are typically static, e.g. a person simply standing/sitting and talking. Non-interesting events
are also events with ambiguous actions taking place, i.e. generic/abstract actions that cannot be described concisely or
actions for which the annotator is unsure about what is happening in the video.

2. Video Annotation:
• For each selected video clip, write a concise, one-sentence description of the main event taking place in the clip. If the

action is too complex, use at most two sentences for describing it, but prioritise one-sentence descriptions.
• Focus only on the objects that humans interact with rather than describing densely every object in the scene.
• To enrich the language descriptions, also describe properties of objects such as color, shape, etc, e.g. ‘blue cup’ or ‘red

onion’. It is not strictly necessary to always describe the object’s property but only when deemed important by the
annotator.

• When you are unsure about the object being used, you can simply describe it as ‘object’. If object is unknown but the
category of the object is known, please describe the object using its category, e.g. ‘food’.

• When there are two or more humans in the scene, use one of their characteristics to distinguish them, e.g. ‘the woman in
the red shirt standing next to the woman in the green shirt is putting a strawberry on a cocktail glass’.

• If there are multiple actions happening consecutively, describe all of them and their associated objects. E.g. ‘a person is
doing action-1 using object-1, then doing action-2 with an object-2’. As shown in the example, you can use ‘then’ for
connecting temporally adjacent actions.

• Provide bounding boxes for humans/different objects mentioned in your description. These bounding boxes should be
applied to all frames where the objects are visible.

• Label each bounding box with a short phrase directly from your sentence description (e.g., ‘a brown dog’, ‘personś
hands’).

• It is not necessary that each object appears in each frame of the video. For example, a person might be using a tool,
then leaving it down and using another tool. In this case, you would annotate with bounding boxes the first tool for the
first half of the video and the second tool for the second half. Another common case is that objects or the person might
disappear and then reappear. In this case, again all instances of the object must be annotated, so you should be careful
about objects leaving the scene as they might enter the scene again later.

• If there are many small objects, e.g. mushrooms in a pan, use a single bounding box labelled as ‘mushrooms’.
• There are cases where two or more bounding boxes are needed for objects of the same type: a) one bounding box for

each human hand when both are used to perform an action, b) one bounding box for each tool/container/appliance etc of
the same type that the human is using, e.g. when they are placing food in two dishes, or pouring the content of a shaker
in two cocktail glasses.

• Descriptions: Must be accurate and written in fluent English. Suitable for either native speakers or highly proficient
English speakers.

• Bounding Boxes: Ensure that bounding boxes accurately encompass the objects for the entirety of their visibility within
the clip. The bounding boxes should be consistent and smooth across frames, maintaining size and position as closely as
possible given the movement of the object and video quality. An exception is when there are abrupt viewpoint changes of
the camera, which might result in objects abruptly changing position and size across neighbouring frames.

Figure 11. Annotation guidelines for the manually annotated iGround dataset.

with the annotation provider and the annotators have been
trained based on those criteria prior to commencing the an-
notation process. We have also performed a pilot annotation
project with the annotation provider on 10 video clips with
several rounds of careful checking and feedback. Moreover,
the annotation provider performed regular quality reviews
on the annotations to ensure that the annotation criteria have
been met.

H. Prompts for automatic curation of spatio-
temporally grounded captions

The full prompt for the Stage 2 (Video-level caption aggre-
gation) of our automatic annotation approach (Section 3 in
the main paper) is shown in Figure 12 and the full prompt for
Stage 3 (Temporally consistent bounding box annotation)
in Figure 13.



System Instructions

Generate a dynamic, video-level description based on frame-level inputs. The inputs include actions performed in individual frames in the form of Subject-Verb-Object (SVO)
triplets along with prepositions and prepositional objects. The SVO triplets describe how actions are performed and how objects interact. Your output should be a concise
narrative in 1 sentence, focusing on the most salient actions depicted across the frames. Enclose the exact text of relevant objects within <p></p> tags.
Input format:

[[‘subject’: ‘subject_text’, ‘verb’: ‘action_text’, ‘object’: ‘object_text’,
‘prepositions_objects’: [(’preposition’, ‘prepositional_object’)],],]

Output format:

A Python dictionary with a key ‘CAPTION’, and as a value a dynamic description of the video content.

Infer motion from static descriptions. E.g. ‘image shows a person holding a spoon and a bowl’ implies ‘person is stirring food in a bowl’. Enclose the human and the most
frequent object that is used to perform the action within <p></p> tags. If there is no human, enclose the two most frequent objects within <p></p> tags.

User Input 1

SVO:

[[‘image’, ‘shows’, ‘cup’], [‘bowl’, ‘is’]],
[[‘person’, ‘holding’, ‘spoon’], [‘spoon’, ‘is’, ‘bowl’],
[[‘image’, ‘shows’, ‘spoon’, (‘inside’, ‘bowl’)]],
[[‘person’, ‘seen’], [‘person’, ‘holding’, ‘spoon’], [‘spoon’, ‘used’],
[‘spoon’, ‘stir’, ‘food’, (‘in’, ‘bowl’)]],
[[‘person’, ‘holding’, ‘spoon’], [‘spoon’, ‘is’, ‘bowl’]],
[[‘person’, ‘holding’, ‘spoon’], [‘spoon’, ‘is’, ‘bowl’]],
[[‘person’, ‘holding’, ‘spoon’], [‘spoon’, ‘is’, ‘bowl’]],
[‘image’, ‘shows’, ‘spoon’, (‘in’, ‘bowl’)]],
[[‘image’, ‘shows’, ‘bottle’], [‘bottle’, ‘positioned’, (‘beside’, ‘bowl’)]],
[[‘image’, ‘shows’, ‘bottle’], [‘bottle’, ‘positioned’, (‘beside’, ‘cup’)]],
[[‘image’, ‘shows’, ‘bottle’], [‘image’, ‘placed’, (‘on’, ‘counter’)],
[‘bottle’, ‘positioned’, (‘beside’, ‘bowl’)]]]

Assistant Response 1

{‘CAPTION’: ‘<p>A person</p> is stirring <p>food in a bowl</p> using a spoon’}

User Input 2

SVO:

[[‘hand’, ‘using’, ‘cutting board’]],
[[‘woman’, ‘using’, ‘cutting board’], [‘woman’, ‘make’, ‘craft project’]],
[[‘child’, ‘using’, ‘craft cutter’], [‘child’, ‘cut’, ‘object’]],
[[‘child’, ‘using’, ‘craft cutter’], [‘child’, ‘cut’, ‘paper’]],
[[‘woman’, ‘using’, ‘craft cutter’], [‘woman’, ‘cut’, ‘object’]],
[[‘woman’, ‘using’, ‘scissors pair’], [‘woman’, ‘cut’, ‘piece’, (‘of’, ‘paper’)]],
[[‘hand’, ‘using’, ‘scissors pair’], [‘hand’, ‘cut’, ‘piece’, (‘of’, ‘paper’)]],
[[‘woman’, ‘using’, ‘scissors pair’], [‘woman’, ‘cut’, ‘piece’, (‘of’, ‘paper’)]],
[[‘woman’, ‘using’, ‘craft cutter’], [‘woman’, ‘cut’, ‘object’]],
[[‘woman’, ‘using’, ‘craft cutter’], [‘woman’, ‘cut’, ‘plate’]]]

Assistant Response 2

{‘CAPTION’: ‘<p>A woman</p> is cutting <p>an object</p> using a craft cutter’}

New User Input

SVO: {input_svo}

Figure 12. The full prompt for Stage 2 (Video-level caption aggregation) of our automatic annotation approach (Section 3 in the main paper).



System Instructions

You are tasked with classifying humans and objects to a set of given categories.
Input format:

Human/Object (string), set of categories (lists of strings).

Output format:

A Python dictionary with a key ‘CATEGORY’, and as a value the predicted category of the human/object.

Use ‘None’ if the human/object doesn‘t belong to any of the categories. DO NEVER classify a human as the object category and vice versa.

User Input 1

Input: ‘person‘
Categories: [‘a woman’, ‘her hair’]

Assistant Response 1

{‘CATEGORY’: ‘a woman’}

User Input 2

Input: ‘table’
Categories: [‘a person’, ‘a bowl’]

Assistant Response 2

{‘CATEGORY’: ‘None’}

User Input 3

Input: ‘a piece of food on a plate’
Categories: [‘a woman’, ‘a meal’]

Assistant Response 3

{‘CATEGORY’: ‘a meal’}

User Input 4

Input: ‘a hand’
Categories: [‘a person’, ‘food on a plate’]

Assistant Response 4

{‘CATEGORY’: ‘a person’}

User Input 5

Input: ‘a man in a white shirt and black apron is also present’
Categories: [‘a person’, ‘food’]

Assistant Response 5

{‘CATEGORY’: ‘a person’}

New User Input

Input: {input_object}
Categories: {input_categories}

Figure 13. The full prompt for Stage 3 (Temporally consistent bounding box annotation) of our automatic annotation approach (Section 3 in
the main paper).


