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LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding

Supplementary Material

1. More of LIFT

1.1. Qualitative Comparison: LIFT vs. GASP

We generated 10 samples from GASP [11] using the pre-
trained model available on their GitHub repository. Al-
though GASP achieves a competitive FID score of 13.5,
its adversarial approach often leads to noticeable artifacts
in the generated samples, a common issue with adversar-
ial methods. These artifacts suggest limitations in cap-
turing fine-grained details and spatial coherence. In con-
trast, our model’s samples demonstrate greater visual fi-
delity, with fewer artifacts and a smoother, more coherent
structure across generated outputs as shown in Figure 2 in
the paper.

Figure 1. Generation result of GASP [11].

1.2. Ablation on Scale Levels of HLG

To assess the contribution of each scale in our HLG frame-
work, we conduct an ablation study on the CelebA-HQ
dataset by selectively removing individual scales and mea-
suring the resulting performance. Specifically, we evalu-
ate four configurations: (1) Global only, (2) Local only, (3)
Global + Local, and (4) Global + Intermediate + Local (our
full model). Table 1 summarizes the corresponding PSNR
values on the test set. The Global-only configuration yields
a PSNR of 24.82 dB, underscoring the importance of fine-
scale information. Conversely, using the Local scale alone
significantly improves performance to 39.28 dB, highlight-
ing the role of detailed spatial features. Combining the
Global and Local scales further raises the PSNR to 39.62
dB, indicating that multi-scale cues complement each other.
Finally, incorporating the Intermediate scale and the Global
and Local scales produces the highest PSNR of 40.91 dB,
demonstrating that each scale contributes unique and essen-
tial information. These results confirm that a multi-scale
approach is crucial for capturing both coarse global con-
text and finer local details, thereby improving overall re-
construction quality.

Table 1. Comparison of test PSNR across different scales.

Scale Global Local Global-Local Global-Intermediate-Local

Test PSNR 24.82 39.28 39.62 40.91

1.3. Different Configurations of LIFT on the
ShapeNet dataset

In Table 2, we evaluate the impact of channel sizes in the
latent representations on reconstruction quality using PSNR
for the ShapeNet 643 dataset. Our main configuration em-
ploys a global latent Z† with 256 channels, an intermedi-
ate latent Z⋆ with 128 channels, and a local latent Z with
64 channels, achieving a PSNR of 35.15 dB with a com-
pression ratio (CR) of 8× for Zα. Halving the channel di-
mensions leads to a PSNR of 33.91 dB (CR of 16×). Fur-
ther reduction to 64, 32, and 16 channels yields a PSNR
of 32.21 dB (CR of 32×). Additional configurations with
even smaller channel sizes—32, 16, 8 channels and 32,
16, 2 channels, result in PSNR values of 30.78 dB (CR of
64×) and 24.01 dB (CR of 256×), respectively. These ex-
periments demonstrate the trade-off between compression
and reconstruction fidelity that higher channel capacities in
the latent spaces contribute to better reconstruction fidelity,
while more compressed representations, despite reducing
PSNR, can still maintain competitive performance relative
to other methods.

Table 2. Impact of channel size in local, intermediate, and global
latents on PSNR. CR denotes the compression ratio based on an
input shape of 643. Higher CR values indicate greater compres-
sion.

Input shape Test PSNR ↑ CR
Z† Z⋆ Z

1× 1× 1× 256 4× 4× 4× 128 8× 8× 8× 64 35.15 8×
1× 1× 1× 128 4× 4× 4× 64 8× 8× 8× 32 33.91 16×
1× 1× 1× 64 4× 4× 4× 32 8× 8× 8× 16 32.21 32×
1× 1× 1× 32 4× 4× 4× 16 8× 8× 8× 8 30.78 64×
1× 1× 1× 32 4× 4× 4× 16 8× 8× 8× 2 24.01 256×

1.4. Scaling LIFT to Higher Resolutions

To evaluate the scalability of LIFT, we apply it to high-
resolution data using CelebA-HQ at 384×384 resolution.
Each image is encoded into a three-level latent hierarchy
consisting of 1×1×256, 8×8×128, and 16×16×64 ten-
sors. For downstream tasks such as generative modeling,
we retain only the local latent (16×16×64), resulting in a
latent that is 27× smaller than the original input in terms of
total dimensionality. We train LIFT for 500 k iterations with



Figure 2. LIFT Shapenet voxel generation results.

a per-device batch size of 15 on four A100-80G GPUs, and
subsequently train an ablated diffusion model (ADM) [7]
on the resulting latent codes. As shown in Table 3, the
ADM model achieves an FID of 9.71, improving over the
DDIM baseline 10.44, while the reconstructor obtains 31.21
and 30.56 dB PSNR on the training and test sets, respec-
tively. Qualitative reconstruction results on the test set are
presented in Figure 3. These results demonstrate that LIFT
maintains strong reconstruction fidelity even at significantly
increased input resolutions.

Table 3. Reconstruction (PSNR) and generation (FID) perfor-
mance on CelebA-HQ 3842.

Method Training PSNR ↑ Test PSNR ↑ FID (Generation) ↓
DDMI [24] – – 10.44

LIFT 31.21 30.56 9.71

1.5. Inference Time Efficiency and Benchmarks

We benchmark the inference-time performance of LIFT on
both 2D (CelebA-HQ 642) and 3D (ShapeNet 643) datasets,
reporting frames per second (FPS) and peak memory us-
age during reconstruction. All models are evaluated on an
NVIDIA Quadro RTX 8000 GPU, with results summarized
in Table 4. Since all methods are evaluated on the same
device, we report baseline performance as provided in the
mNIF [36] paper. On CelebA-HQ, LIFT achieves an infer-

ence speed of 5507.9 FPS, more than 2.14× faster than the
next best method (mNIF-S at 2985.6 FPS), while also con-
suming less memory (8.2 MB vs. 10.2 MB). On ShapeNet,
LIFT maintains its advantage, reaching 410.4 FPS with a
memory footprint of only 406 MB, representing a 1.86×
speedup over mNIF-S (191.5 FPS), and a substantial reduc-
tion in memory usage compared to GEM (4010 MB) and
GASP (763 MB). These results demonstrate that LIFT is
highly efficient, offering faster inference and lower memory
consumption across diverse input modalities. Its compact
latent representation and localized decoding enable scalable
performance, making it well-suited for deployment in real-
time and resource-constrained applications.

Table 4. Inference speed (FPS) and memory usage for different
methods evaluated on CelebA-HQ 642 and ShapeNet 643, exe-
cuted on an NVIDIA Quadro RTX 8000.

Method CelebA-HQ 642 ShapeNet 643

FPS ↑ Mem (MB) ↓ FPS ↑ Mem (MB) ↓
Functa [10] 332.9 144.1 – –
GEM [9] 559.6 70.3 16.7 4010.0
GASP [11] 1949.3 16.4 180.9 763.1
DPF [39] – – – –
mNIF-S [36] 2985.6 10.2 191.5 642.1
mNIF-L [36] 891.3 24.4 69.6 1513.3

LIFT 5507.9 8.2 410.4 406.0



Figure 3. LIFT CelebA-HQ 3842 reconstruction results.

2. Implementation Details
2.1. Datasets

2.1.1 Images

We use the CelebA-HQ 64 × 64 dataset provided by
Functa [10], as well as the CelebA-HQ 384 × 384
dataset [16], each partitioned into 27K training and 3K test-
ing images. For reconstruction tasks, performance is eval-
uated using the Peak Signal-to-Noise Ratio (PSNR) and re-
construction Fréchet Inception Distance (rFID). Addition-
ally, the FID metric [14] is computed alongside precision,
recall, and F1 score metrics to assess image generation qual-
ity [23, 28]. To further demonstrate scalability, we use the
ImageNet-100 256 × 256 dataset [27] for the reconstruc-
tion task. ImageNet-100 [2, 27], a subset of the ImageNet-
1k dataset, consists of 100 classes with 130K training and
5K test samples. For the classification task, we utilize the
CIFAR-10 dataset [18], which contains 60K 32×32 color
images distributed across 10 classes, with 6K images per
class. The dataset is divided into 50K training images and
10K test images.

2.1.2 Voxels

We employ the ShapeNet dataset [5], which includes 35,019
training and 8,762 testing samples for 3D voxel data. Each
voxel is represented at a 643 resolution with 16,384 sur-
face points. We evaluate reconstruction tasks using Mean
Squared Error (MSE) and PSNR metrics. For genera-
tion tasks, following IM-Net [6], we generate 8,762 shapes
and extract 2,048-dimensional mesh features. Performance
is measured using coverage, maximum mean discrepancy
(MMD) [1], and Chamfer distance, adhering to the GEM [9]
and mNIF [36] protocols.

2.2. Stage 1: Context Adaptation

For stage 1, we implement all models in JAX [4] using
Haiku [13] and JAXline for training, with Functa [10] as
the baseline framework for our coding setup. This stage in-
volves adapting models for image and voxel data through
a meta-learning framework, as detailed in the subsections
below.



Table 5. Training configurations and model specifications for Stage 1 across CelebA-HQ, ImageNet, and ShapeNet datasets, detailing
hyperparameters optimized for each dataset.

CelebA-HQ 642

Input shape P-MLP Configs Meta-learning Configs

Z† Z⋆ Z # Hidden Layers Width W0 Inner lr Inner Opt Outer lr Outer Opt Tinner Meta-SGD

1× 1× 64 4× 4× 32 8× 8× 16 1 256 15 1.0 SGD 1.5e-5 Adam 3 ✓
1× 1× 128 4× 4× 64 8× 8× 32 1 256 20 1.0 SGD 5e-5 Adam 3 ✓
1× 1× 256 4× 4× 128 8× 8× 64 1 256 20 1.0 SGD 5e-5 Adam 3 ✓
1× 1× 512 4× 4× 256 8× 8× 128 1 256 20 1.0 SGD 3e-5 Adam 3 ✓
1× 1× 256 4× 4× 128 8× 8× 64 1 256 20 1.0 SGD 5e-5 Adam 3 ✓
1× 1× 256 4× 4× 128 8× 8× 64 3 64 20 1.0 SGD 5e-5 Adam 3 ✓
1× 1× 256 4× 4× 128 8× 8× 64 4 64 20 1.0 SGD 5e-5 Adam 3 ✓
1× 1× 256 4× 4× 128 8× 8× 64 8 32 20 1.0 SGD 3e-5 Adam 3 ✓
1× 1× 256 4× 4× 128 8× 8× 64 16 16 20 1.0 SGD 2e-5 Adam 3 ✓
1× 1× 256 2× 2× 128 8× 8× 64 1 256 20 1.0 SGD 5e-5 Adam 3 ✓
1× 1× 256 2× 2× 128 4× 4× 64 1 256 20 1.0 SGD 5e-5 Adam 3 ✓
1× 1× 256 4× 4× 128 8× 8× 128 1 256 20 1.0 SGD 4e-5 Adam 3 ✓
1× 1× 64 4× 4× 64 8× 8× 64 1 256 20 1.0 SGD 5e-5 Adam 3 ✓
1× 1× 128 4× 4× 128 8× 8× 128 1 256 20 1.0 SGD 4e-5 Adam 3 ✓

CelebA-HQ 3842

1× 1× 256 8× 8× 128 16× 16× 64 2 256 15 1.0 SGD 1.5e-5 Adam 3 ✓

ImageNet-100 2562

1× 1× 256 8× 8× 256 16× 16× 256 2 256 20 1.0 SGD 2e-5 Adam 3 ✓
1× 1× 512 8× 8× 256 16× 16× 128 2 256 20 1.0 SGD 2e-5 Adam 3 ✓

CIFAR-10 322

1× 1× 64 4× 4× 32 8× 8× 16 2 256 10 1.0 SGD 3e-5 Adam 3 ✓

ShapeNet 643

1× 1× 1× 256 4× 4× 4× 128 8× 8× 8× 64 4 64 20 1.0 SGD 4e-5 Adam 3 ✓
1× 1× 1× 256 4× 4× 4× 128 8× 8× 8× 64 8 32 20 1.0 SGD 4e-5 Adam 3 ✓
1× 1× 1× 128 4× 4× 4× 64 8× 8× 8× 32 4 64 20 1.0 SGD 4e-5 Adam 3 ✓
1× 1× 1× 64 4× 4× 4× 32 8× 8× 8× 16 4 64 20 1.0 SGD 4e-5 Adam 3 ✓
1× 1× 1× 32 4× 4× 4× 16 8× 8× 8× 8 4 64 20 1.0 SGD 4e-5 Adam 3 ✓
1× 1× 1× 32 4× 4× 4× 16 8× 8× 8× 2 4 64 20 1.0 SGD 2e-5 Adam 3 ✓

2.2.1 Images

We train on images from the train split of the CIFAR-10
322, CelebA-HQ 642, and ImageNet-100 2562 datasets.
The model takes local 2D input coordinates (xlocal, ylocal),
with each P-MLP processing its corresponding local coor-
dinate and returning 3D RGB values (yR, yG, yB) repre-
senting the local patch. After processing, we merge these
patches to reconstruct the full image. We use local dense
sampling, querying all local input coordinates in parallel for
all P-MLPs. For instance, with a grid size of 8, we gener-
ate 64 query coordinates (64/8 × 64/8) for 8 × 8 P-MLPs
to input into the network for image benchmarking. In ad-
dition, the model is trained using a meta-learning approach
for 200K iterations with a per-device batch size of 128 on
four A40 GPUs (each with 48 GB of memory) using the
CelebA-HQ dataset. We used a per-device batch size of 512
for CIFAR-10 and 16 for ImageNet-100, trained on 4 A40
GPUs. All details regarding different model configurations
and meta-learning setups are provided in Table 5. To cre-
ate the modulation datasets during inference, we freeze the
network weights and optimize the zero-initialized latents
in 3 steps using SGD. We then save the resulting Zα la-

tent vectors for both training and test data. Additionally,
we set K = 8 in our Lsmoothness loss function with the
λ = (1/100)2. For the ablation studies, we use the high-
lighted pink in Table 5. Our results in the main Table 1
use the highlighted orange .

2.2.2 Voxels

We train on the ShapeNet 643 dataset, using 35,019 training
shapes at 64×64×64 resolution and testing on 8,762 shapes
at the same resolution. The model takes local 3D input co-
ordinates (xlocal, ylocal, zlocal), with each P-MLP processing
its corresponding local coordinate, and returns a scalar out-
put yo, indicating whether the queried coordinate is inside
or outside of the object. After processing, we merge these
local outputs to reconstruct the entire voxel grid represen-
tation of the shape. The model is trained using a meta-
learning approach, configured for 120K iterations with a
per-device batch size of 8, on four A40 GPUs. Further de-
tails on the configurations and meta-learning setups are pro-
vided in Table 5. We use the approach described for Images
( subsubsection 2.2.1) to create the modulation datasets dur-



ing inference. We set K = 16 in our Lsmoothness loss func-
tion with the λ = (1/100)2.

2.3. Stage 2: Task-Driven Generalization

2.3.1 Images

Generation: We base our image generation implementa-
tion on the ablated diffusion model (ADM) [7]. The train-
ing pipeline begins with the creation of our modulation
dataset using the LIFT framework. In this setup, the la-
tent representations of Zα are derived using the configura-
tions highlighted in orange in Table 5. For the diffusion
model, we configure an image size of 8 and set the num-
ber of channels to 320, employing channel multipliers of 1,
2, and 4. Each layer consists of two residual blocks with
a dropout rate of 0.1. Attention mechanisms are applied
at a resolution of 4, and both resblock updown and
use scale shift norm are enabled to enhance feature
normalization and spatial resolution handling. The diffu-
sion process is conducted over 2000 steps for 500K itera-
tions using a cosine noise schedule. Training is performed
with a learning rate of 1 × 10−4 and a batch size of 256.
We utilize a loss-second-moment schedule sampler to opti-
mize the training dynamics. To mitigate the low variance
observed in the learned modulations, we standardize the la-
tent representations across spatial dimensions (Z

α−µ
τ.σ ), en-

suring that each feature dimension is centered and scaled
independently. This normalization simplifies the generative
process. Additionally, we apply a scaling factor (τ ) of 2.5 to
our standardization to enhance training stability. During the
sampling phase, we employ the DDIM sampler [32] with a
timestep respacing of 200.
Classification: In our implementation, the VMamba [38]
model is configured with a batch size of 512 and an embed-
ding dimension of 128. Label smoothing with a factor of 0.1
is applied to enhance generalization, and a drop path rate of
0.1 is employed for regularization. The model architecture
comprises two stages with depths of 9 and 2 layers, respec-
tively. Latents are normalized across examples using a scal-
ing normalization factor of 2.0. The learning rate schedule
includes a base learning rate of 5e-3, a minimum learning
rate of 5e-6, and a warmup phase of 10 epochs starting at
5e-5.

2.3.2 Voxels

Generation: For our base diffusion model architecture, we
use ADM [7], which features a U-Net architecture initially
created for 2D image synthesis. Since the original design
was intended for 2D, we adapted all operations to function
in 3D. We trained our diffusion model for 500K iterations
with a learning rate of 1 × 10−4 and a batch size of 64.
The training process employs the ”loss-second-moment”

schedule sampler, and we standardize the latents like im-
ages by scaling them with a factor τ = 2.5. The model
operates on 8 × 8 × 8 image inputs, with an initial chan-
nel size of 128 and channel multipliers set to {1, 2, 4}.
Each resolution includes two residual blocks. A dropout
rate of 0.1 is applied. In addition, resblock updown
and use scale shift norm are enbaled. The diffusion
process comprises 1000 steps and follows a cosine noise
schedule for smooth and stable noise transitions. For sam-
pling, DDIM is used with 200 timesteps, achieving a bal-
ance between computational efficiency and sample quality.

3. ReLIFT vs. SIREN

3.1. SIREN Pipeline

Given a set of signals {(ri,yi)}Ni=1, where ri ∈ Rd rep-
resents spatial coordinates and yi ∈ Rm denotes the cor-
responding attributes, SIREN aims to approximate a con-
tinuous function f(r; θ) that maps coordinates to their as-
sociated values with high fidelity. This function is param-
eterized as a neural network, where each layer l operates
according to the following equations:

z(0) = sin
(
ω0(W

(0)r+ b(0))
)

z(l) = sin
(
ω0(W

(l)z(l−1) + b(l))
)
, l = 1, . . . , L− 2,

f(r; θ) = W (L)z(L−1) + b(L),
(1)

where z(l) is the output of the l-th layer, θ = {W (l),b(l) |
l = 1, . . . , L} denotes the learnable parameters, L is the
total number of layers, and ω0 is a fixed hyperparameter
that scales the input to the sinusoidal activation, controlling
the frequency response of each layer. Also, they showed
that rescaling initialization by ω0 adjusts SIRENs’ spectral
bias, with higher ω0 favoring higher frequencies.

3.2. Revisiting Input Layer Transformation

As highlighted in [37], the initial layer of SIREN serves as
a frequency encoding mechanism. Specifically, the output
of the first layer can be expressed as:

z(0) = sin (Ωr) , (2)

where Ω = ω0W
(0) ∈ RT . Considering a three-layer

SIREN, the network can be defined as:

f(r; θ) = w(2)⊤ sin
(
W(1) sin (Ωr)

)
, (3)

with W(1) ∈ RF×T and w(2) ∈ RF . The input to each
neuron in the second layer is a linear combination of si-
nusoids at frequencies determined by Ω. The output of a



neuron z
(1)
m in the second layer can be written as:

z(1)m = sin
(
W(1)

m: sin (Ωr)
)

= sin

(
T−1∑
t=0

W
(1)
m,t sin

(
ω⊤

t r
))

, (4)

where ω⊤
t denotes the t-th row of Ω. To analyze the fre-

quency components without considering the bias term, we
expand the sine of a sum using Bessel function identities.
Using the property:

sin

(∑
k

ϕk

)
= Im

{
exp

(
j
∑
k

ϕk

)}
, (5)

and the exponential identity:

exp

(
j
∑
k

ϕk

)
=
∏
k

exp (jϕk) , (6)

we can write:

exp

(
j

T−1∑
t=0

W
(1)
m,t sin

(
ω⊤

t r
))

=

T−1∏
t=0

exp
(
jW

(1)
m,t sin

(
ω⊤

t r
))

.

(7)

Using the expansion of the complex exponential of a sine
function:

exp (jβ sin(θ)) =

∞∑
n=−∞

Jn(β)e
jnθ, (8)

where Jn(β) is the Bessel function of the first kind of order
n, we have:

exp
(
jW

(1)
m,t sin

(
ω⊤

t r
))

=

∞∑
st=−∞

Jst

(
W

(1)
m,t

)
ejstω

⊤
t r.

(9)

Therefore, the product over t becomes:

exp

(
j

T−1∑
t=0

W
(1)
m,t sin

(
ω⊤

t r
))

=

T−1∏
t=0

∞∑
st=−∞

Jst

(
W

(1)
m,t

)
ejstω

⊤
t r

=
∑
s∈ZT

(
T−1∏
t=0

Jst

(
W

(1)
m,t

)
ejstω

⊤
t r

)
,

(10)

where s = (s0, s1, . . . , sT−1). Since sin (
∑

t ϕt) =
Im {exp (j

∑
t ϕt)}, we have:

z(1)m = Im

{
exp

(
j

T−1∑
t=0

W
(1)
m,t sin

(
ω⊤

t r
))}

= Im

{∑
s∈ZT

(
T−1∏
t=0

Jst

(
W

(1)
m,t

)
ejstω

⊤
t r

)}

=
∑
s∈ZT

(
T−1∏
t=0

Jst

(
W

(1)
m,t

))
sin

(
T−1∑
t=0

stω
⊤
t r

)
.

(11)

Thus, the output of the network can be expressed as:

f(r; θ) =
F−1∑
m=0

w(2)
m z(1)m =

F−1∑
m=0

w(2)
m

∑
s∈ZT

(
T−1∏
t=0

Jst

(
W

(1)
m,t

))
sin

(
T−1∑
t=0

stω
⊤
t r

)
.

(12)
This expression indicates that the network output is a sum
of sinusoidal functions at frequencies

∑T−1
t=0 stωt, where

st ∈ Z. This implies that by scaling
∑T−1

t=0 stωt, we can
increase the network’s capacity to learn higher-frequency
components. In addition, the coefficients of these sinu-
soids are determined by the products of Bessel functions
Jst

(
W

(1)
m,t

)
and the weights w

(2)
m . Due to the properties

of Bessel functions, which generally decrease in magni-
tude with increasing order |st| when the argument W (1)

m,t is
small, higher-order harmonics (those with larger |st|) tend
to have smaller coefficients. This results in an implicit bias
towards lower-frequency components, concentrating most
of the output signal’s energy around the fundamental fre-
quencies ωt. However, increasing the scale of inner layer
coefficients, like W (1), boosts higher-order harmonics, al-
lowing the network to capture a wider frequency range.
Therefore, we begin by examining how scaling the input
layer frequency affects the network’s capacity. Next, we
introduce a residual connection term, which intuitively di-
rects the network’s focus towards adjusting W (1) to amplify
higher-order harmonics while preserving the fundamental
components.

3.3. Effect of Input Scaling on Frequency Repre-
sentation

To investigate the effect of scaling the input frequencies, we
introduce a scaling factor γ > 1 such that:

z(0) = sin (γΩr) . (13)



Applying the same analysis, the output of the second layer
becomes:

z(1)m = Im

{
exp

(
j

T−1∑
t=0

W
(1)
m,t sin

(
γω⊤

t r
))}

= Im

{
T−1∏
t=0

exp
(
jW

(1)
m,t sin

(
γω⊤

t r
))}

= Im

{
T−1∏
t=0

( ∞∑
st=−∞

Jst

(
W

(1)
m,t

)
ejstγω

⊤
t r

)}

=
∑
s∈ZT

(
T−1∏
t=0

Jst

(
W

(1)
m,t

))
sin

(
γ

T−1∑
t=0

stω
⊤
t r

)
.

(14)

By introducing the scaling factor γ, we effectively scale the
frequencies of the sinusoidal components in the output by
γ. When γ increases, the frequencies γ

∑T−1
t=0 stωt in-

crease proportionally, extending the network’s capacity to
represent higher-frequency components. This adjustment
enhances the network’s ability to represent high-frequency
information by broadening the range of frequencies it can
model.

3.4. ReLIFT and Residual Connections

SIRENs have shown impressive abilities in representing
complex signals using sinusoidal activations [31]. However,
they face a capacity-convergence gap when modeling high-
frequency components. Although scaling the first layer ω0

can improve the network’s capacity for higher frequencies,
it may not fully bridge this gap (see Figure 4). To overcome
these limitations, we propose adding residual connections
to our architecture, aiming to enhance both expressiveness
and convergence.
In our proposed architecture, ReLIFT, we integrate residual
connections into SIREN, where each layer adds its input to
its output. This approach facilitates gradient flow, preserves
low-frequency representations, and enables better modeling
of higher frequencies. The network layers are defined as
follows:

z(0) = sin
(
γω0(W

(0)r+ b(0))
)

z(l) = sin
(
ω0(W

(l)z(l−1) + b(l))
)
+z(l−1), l = 1, . . . , L− 2,

f(r; θ) = W (L)z(L−1) + b(L).
(15)

Let’s consider the first layer outputs:

z(0) = sin (γΩr) . (16)

The second layer with a residual connection is given by:

z(1) = sin
(
W(1) sin (γΩr)

)
+ z(0). (17)

Considering the frequency component analysis using Bessel
function identities (see subsection 3.2), the output of the
second layer becomes:

z(1)m =
∑
s∈ZT

(
T−1∏
t=0

Jst

(
W

(1)
m,t

))
sin

(
γ

T−1∑
t=0

stω
⊤
t r

)
+ sin(γωT

mr). (18)

Intuitively, the residual connection in our network plays a
crucial role in ensuring that lower-order harmonics (funda-
mental frequencies) are robustly represented. Although the
Bessel expansion contributes to higher-order harmonics, the
residual connection allows the network to avoid depending
solely on the Bessel functions to capture lower frequencies.
By preserving fundamental frequencies through the resid-
ual connection, the network can adjust the weights W (1)

to enhance higher-order harmonics without risking the at-
tenuation of fundamental components. Furthermore, resid-
ual connections provide shortcut paths for gradients, which
significantly improves gradient flow during backpropaga-
tion [12], mitigating issues related to vanishing or explod-
ing gradients.
We conducted experiments comparing the standard SIREN
model and our ReLIFT model, including ablations, on a
single-image representation task with similar model config-
urations (a 5-layer MLP with a width of 256). As illustrated
in Figure 4, ReLIFT achieved faster convergence and higher
PSNR, demonstrating its effectiveness in reducing the gap
in convergence and capacity. Additionally, we extend our
method to various tasks, which are discussed in the follow-
ing sections. We also present the activation statistics for Re-
LIFT and SIREN in Figure 5. As shown, the maximum fre-
quency increases with additional layers, allowing our model
to capture a broader range of frequencies effectively.

4. ReLIFT in the LIFT Framework
We integrate ReLIFT into our LIFT framework, modify-
ing the modulation approach of SIREN-based activations
(as detailed in Section 3.2). Specifically, we introduce a
residual connection to the output of the activation function
and apply a scaling factor γ to the input layer frequency ω0.
To evaluate the impact of this approach, we perform a re-
construction task on the CelebA-HQ 642 dataset. Both the
baseline and ReLIFT networks are trained using the config-
urations specified in Table 5, highlighted in pink . We also
set γ = 2, and trained both models for 120K iterations.
Our experiments reveal a marked improvement in conver-
gence rate and reconstruction quality during the early stages
of training with the ReLIFT model compared to the baseline
LIFT configuration. Notably, at just 10K iterations, ReLIFT
achieves a PSNR that is 2.3 points higher than LIFT, and by
20K iterations, ReLIFT reaches a PSNR of 38.21, outper-



0 100 200 300 400 500
# Epochs

5

10

15

20

25

30

35

40

PS
N

R
 (d

B
)

Image Representation

SIREN
ReLIFT w/o First Layer Mapping
ReLIFT w/o Residual
ReLIFT

Figure 4. Comparison of convergence rates between the standard
SIREN and ReLIFT on an image representation task. ReLIFT ex-
hibits faster convergence and higher capacity. γ is set to 2.

forming all baselines, which typically requires 200K itera-
tions to approach comparable results. Regarding computa-
tional efficiency, ReLIFT reaches 10K iterations in a wall
time of 68 minutes and 20K in approximately 134 minutes,
with a per-device batch size of 128 on 4 A40 GPUs. This
efficiency demonstrates that, within only 134 minutes, Re-
LIFT can achieve high-fidelity reconstructions that surpass
all current SOTA methods, making it a compelling model
for rapid, high-quality image reconstruction.

5. Single Data Task Analysis
To evaluate the effectiveness of our straightforward ap-
proach, ReLIFT, we extend our experiments to single data
tasks, including signal representation and inverse prob-
lems. Our results demonstrate that ReLIFT can signif-
icantly reduce the convergence-capacity gap and achieve
SOTA performance across all tasks, without introducing ad-
ditional learnable parameters or requiring new activation
functions. These findings highlight ReLIFT’s ability to sur-
pass existing SOTA methods with a simple yet powerful
adjustment, making it highly applicable across a range of
tasks.
We evaluate ReLIFT against six SOTA INRs: ReLU with
positional encoding (ReLU+P.E) [33], Fourier feature em-
bedding (FFN) [33], SIREN [31], Gaussian-based activa-
tion functions (Gauss) [26], wavelet activation functions
(WIRE) [29], FINER [21]. To ensure a fair comparison,
each INR is configured with the same network architecture,
consisting of 3 hidden layers with 256 neurons per layer,
and is trained using the Adam optimizer [17] and an L2 loss
function between the network output and the ground truth.
Other hyperparameters follow the specifications provided in
the authors’ open-source code and WIRE [29]. Experiments

run for 500 epochs, except for audio (1000 epochs) and oc-
cupancy (200 epochs). We also set γ = 2 for ReLIFT.

5.1. Signal Representations

5.1.1 Image

Data. For the image representation task, we use the DIV2K
dataset [34], with images downscaled to 1/4 of their original
size. In Figure 7, the first image (octopus) is resized from
1404 × 2040 × 3 to 351 × 510 × 3. The second image is
trained at a resolution of 411 × 510 × 3, and the third at
435× 510× 3.
Analysis. Given a 2D point (x, y), the INR learns a map-
ping function f : R2 → R3 that outputs the RGB val-
ues. The results in Figure 7 highlight that ReLIFT consis-
tently surpasses other INR methods in PSNR across various
images, showcasing its superior reconstruction capability.
For the first image (octopus), ReLIFT delivers sharper re-
constructions, particularly in the highlighted area. In con-
trast, competing methods such as ReLU+P.E., FFN, and
WIRE produce noticeably blurrier outputs, and Gauss intro-
duces color artifacts. ReLIFT improves the PSNR by 2.59
and 2.64 over SIREN and FINER, the second and third-
best methods, respectively. Similarly, for the second image
(tiger), ReLIFT achieves a PSNR increase of 3.61 and 4.41
over SIREN and FINER, demonstrating the method’s relia-
bility across different images. In the final, higher-resolution
image, ReLIFT achieves a PSNR of 40.11, surpassing its
closest competitor by a margin of 4.12, further reinforcing
its capability for high-fidelity reconstructions.

5.1.2 Occupancy Volume

Data. We evaluate our approach using 4 shapes from a pub-
lic dataset [19, 22]. For each shape, we create occupancy
volumes by point sampling on a 512 × 512 × 512 grid, as-
signing a value of 1 to voxels within the shape and 0 to those
outside.
Analysis. Given a 3D point (x, y, z), the INR learns a
mapping function f : R3 → R that outputs the signed
distance field (SDF) values. The quantitative comparisons
in Table 6 demonstrate the effectiveness of our approach,
ReLIFT, in representing SDF across various shapes. In
terms of Intersection over Union (IOU), ReLIFT consis-
tently outperforms other methods on all tested shapes: Ar-
madillo, Dragon, Lucy, and Thai Statue. On average, Re-
LIFT achieves the highest IOU (0.9963), surpassing the
second-best method, FINER, with an average of 0.9944.
The qualitative comparison is shown in Figure 8 for the
Thai statue. ReLIFT achieves the best overall performance,
capturing both high-frequency details and smooth transi-
tions, closely aligning with the ground truth. FINER re-
tains broader structural features but sacrifices finer details,
leading to coarser outputs. SIREN performs well in smooth
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(b) SIREN

Figure 5. Activation statistics comparison between ReLIFT and SIREN.
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Figure 6. Convergence rate comparison of ReLIFT and LIFT.

regions but introduces artifacts and struggles with intricate
features, resulting in less accurate reconstructions. WIRE
produces overly smoothed approximations with significant
detail loss, making it suitable only for coarse representa-

tions. ReLU+P.E. benefits from positional encoding to im-
prove spatial structure over WIRE and SIREN but does not
reach the fidelity and precision of ReLIFT and FINER.

Table 6. Quantitative comparisons of SDF representations.

Methods Armadillo Dragon Lucy Thai Statue Avg.

IO
U
↑ ReLU+P.E. 0.9966 0.9963 0.9919 0.9906 0.9939

SIREN 0.9968 0.9969 0.9881 0.9934 0.9938
WIRE 0.9677 0.9724 0.9705 0.9484 0.9648
FINER 0.9958 0.9945 0.9955 0.9919 0.9944

ReLIFT 0.9974 0.9975 0.9960 0.9943 0.9963

5.1.3 Audio Representations

Data. For our audio representation task, we use the initial 7
seconds of Bach’s Cello Suite No. 1: Prelude [31], sampled
at a rate of 44100 Hz.
Analysis. We evaluate ReLIFT’s performance against other
methods to assess its effectiveness in audio signal represen-
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Figure 7. Image representation: PSNR comparisons of ReLIFT with SOTA models.
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Figure 8. Shape representation: Qualitative comparisons of ReLIFT with SOTA models.

tation. Given a 1D point, the INR learns a mapping func-
tion f : R → R. ReLIFT leverages its residual capabilities
and scaling factor, allowing us to use a higher frequency
scaling value w0. For ReLIFT, we set the first layer ω0

to 10000, scaled by γ = 2, and use hidden layers with
ω0 = 90. In contrast, the original SIREN architecture suf-
fers when high values of ω0 are used. According to Neu-
ral Tangent Kernel (NTK) analysis [15] in [37], excessively
large ω0 values can lead to a poorly conditioned NTK,
where certain eigenvalues become too small. This issue
hinders effective learning, resulting in SIREN’s poor per-
formance on high-frequency representations. By addressing
this challenge, ReLIFT achieves a PSNR of 54.99 dB, out-
performing SIREN and other methods, with FINER as the
next best at 46.56 dB—a difference of +8.43 dB (see Fig-
ure 9). The periodic nature of audio signals allows ReLIFT
to produce a clear and accurate representation, similar to
SIREN, but without the background noise issues. ReLIFT
quickly reaches a low-error representation, while methods
like Gauss, WIRE, and ReLU+P.E. introduce more notice-
able distortion during playback. SIREN and FINER reduce
this problem up to a point, but background noise is still
present. Overall, ReLIFT performs best in minimizing er-
ror, as reflected in its PSNR value and reconstruction error.

5.2. Inverse Problems

5.2.1 Image Super-resolution

Data. An image from the DIV2K dataset [34] is used, with
downsampling applied from an original resolution of 1356
× 2040 × 3 by scaling factors of 1/2, 1/4, and 1/6.
In super-resolution. INRs serve as effective interpolants,
using their natural strengths and inherent biases to enhance
performance. To test this idea, we performed 1×, 2×, 4×,
and 6× super-resolution experiments on an image. The

results in Table 7 show that ReLIFT achieves the high-
est PSNR and SSIM values at every super-resolution level,
outperforming other top methods. For instance, ReLIFT
reaches a PSNR of 34.30 and an SSIM of 0.94 at 1× reso-
lution and keeps a strong performance up to 6× resolution
with a PSNR of 27.28 and an SSIM of 0.85. Visual com-
parisons Figure 10 also show that ReLIFT preserves sharper
details, while other methods tend to produce blurrier results,
highlighting ReLIFT’s ability to maintain high-quality re-
construction.

Table 7. ReLIFT vs. SOTAs in super-resolution.

Methods 1× 2× 4× 6×
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Gauss 30.32 0.79 29.15 0.86 26.92 0.83 25.17 0.81
FFN 32.83 0.90 29.28 0.85 29.03 0.86 27.05 0.84
ReLU P.E. 32.46 0.87 30.41 0.88 26.10 0.83 24.61 0.81
WIRE 31.63 0.85 31.28 0.86 28.61 0.83 24.76 0.70
SIREN 32.02 0.87 31.55 0.89 28.95 0.87 26.37 0.84
FINER 34.35 0.89 32.45 0.90 29.31 0.87 26.94 0.83

ReLIFT 34.30 0.94 33.07 0.90 30.23 0.89 27.28 0.85

5.2.2 Image Denoising

Data. We use an image from the DIV2K dataset [34],
downsampled by a factor of 1/4 from an original resolu-
tion of 1356 × 2040 × 3 to 339 × 510 × 3. To simulate
realistic sensor noise, we apply photon and readout noise,
where each pixel is affected by independent Poisson ran-
dom variables. The mean photon count (τ ) is set to 40, and
the readout count is fixed at 2.
Analysis. We demonstrate ReLIFT’s effectiveness in tack-
ling inverse problems, especially in image denoising, by
leveraging its inductive bias and robustness to noise. To
manage high-frequency noise patterns in noisy images, we
set the first layer scaling parameter to ω0 = 10, which
helps ReLIFT maintain a balance between low- and high-
frequency information—a configuration we also apply to
SIREN and WIRE for comparison. As shown in Fig-
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Figure 9. Audio representation: PSNR and reconstruction error comparisons of ReLIFT with SOTA models.
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Figure 10. Image Super-resolution: PSNR and SSIM comparisons of a 4× single image super-resolution between ReLIFT and SOTA
models.

ure 11, ReLIFT achieves significant improvements, includ-
ing a PSNR gain of +10.84 dB and an SSIM increase of 0.45
over the original noisy image. ReLIFT effectively preserves
image details while reducing noise artifacts, as evident in
the zoomed-in areas, where both SIREN and WIRE exhibit

over-smoothed details. While ReLU-based networks pri-
marily capture low-frequency information, ReLIFT excels
at balancing low- and high-frequency features benefiting
from its optimized scaling and residual connections.
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Figure 11. Image Denoising: PSNR and SSIM comparisons between ReLIFT and SOTA models.

5.2.3 Inpainting

Data. For the inpainting experiment, we use a 572×582×3
image, where 25% of the pixels are masked as shown in the
”Training Data” column in Figure 12. The masked pixels
serve as missing data points that the models aim to recon-
struct, while the remaining pixels provide context for the
inpainting process. This setup tests each model’s ability to
restore missing information while preserving image quality.
Analysis. In Figure 12, we compare the performance
of ReLIFT with other SOTA methods, including FINER,
SIREN, and ReLU+P.E., on the inpainting task. ReLIFT
achieves the highest PSNR at 22.40 dB, outperforming
FINER (22.17 dB), SIREN (22.02 dB), and ReLU+P.E.
(21.43 dB). This improvement demonstrates ReLIFT’s su-
perior capability to restore missing details with greater ac-
curacy. In the zoomed-in regions, we observe that ReLIFT
maintains sharper edges and textures compared to other
methods, which tend to produce more blurred or smoothed
reconstructions. FINER follows closely behind ReLIFT in
terms of PSNR, showing reasonable inpainting quality but
slightly softer details. SIREN and ReLU+P.E. further lag
in performance, with more pronounced blurring in the re-
constructed areas, suggesting less effective handling of fine
textures and edges. ReLIFT’s advantage stems from its de-
sign, which effectively balances high- and low-frequency
features, allowing it to capture both broad structures and
finer details in the inpainting process.

6. ReLIFT Spectral Bias
Previous work by Rahaman et al. [25] has shown that MLP-
based networks exhibit a spectral bias, where lower fre-
quency components are learned more rapidly than higher
ones. To investigate this spectral bias within our network,
we adopted [30] experimental framework using a 1D pe-
riodic function composed of four primary frequencies, as
defined in Equation 19. The function f(x) was sampled at
300 points over the interval [−1, 1].

f(x) = 2R

(
sin(3πx) + sin(5πx) + sin(7πx) + sin(9πx)

2

)
(19)

In this equation, R represents a rounding function that in-
troduces discontinuities, thereby increasing the complexity
of the training process. Our network architecture consists

of a multilayer perceptron (MLP) with three hidden layers,
each containing 128 neurons. We set the initial frequency
parameter ω0 = 5 for both the SIREN model and our pro-
posed method, ReLIFT, with a scaling factor γ = 2.
To evaluate the effectiveness of our approach, we trained
both SIREN and ReLIFT on the defined function and com-
pared their frequency learning dynamics. As illustrated
in Figure 13, SIREN demonstrates a spectral bias by quickly
learning the low-frequency components while struggling to
capture the high-frequency ones. In contrast, our ReLIFT
method successfully balances the learning of both low and
high-frequency components, thereby mitigating the spectral
bias inherent in standard MLP-based networks.

7. ReLIFT Layer Visualization

The layer visualization for ReLIFT, SIREN, FINER, and
WIRE are depicted in Figure 14. We analyze each method
below.

7.1. ReLIFT

ReLIFT displays structured and coherent spatial patterns
across all layers, indicating strong feature retention. The
patterns remain intricate even in the deeper layers, suggest-
ing that ReLIFT’s design allows it to capture and retain
fine-grained details across the network depth. The PSNR
of 37.11 dB aligns with the visual clarity of the patterns,
as ReLIFT seems to retain more information with minimal
degradation in detail.

7.2. SIREN:

SIREN starts with sharp, detailed patterns in the initial lay-
ers, but these become progressively noisier and less defined
in the later layers. While the initial layers retain signifi-
cant variance, later layers lose high-frequency details. This
could be due to the sinusoidal activation potentially intro-
ducing noise or leading to over-smooth representations in
deeper layers. The PSNR of 34.10 dB reflects this slight
degradation in detail. Although SIREN can capture com-
plex features initially, it may struggle to maintain high fi-
delity across multiple layers, making it somewhat less ef-
fective than ReLIFT for fine-detail learning.
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Figure 12. Inpainting: PSNR comparison between ReLIFT and SOTA models on 25% of the pixels in a 572× 582× 3 image.
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Figure 13. Frequency learning comparison between SIREN and
ReLIFT. The x-axis shows training steps, the y-axis indicates fre-
quency, and the color represents relative approximation error.

7.3. FINER:

FINER shows larger, blocky patterns that lose resolution as
layers deepen, indicating a shift towards lower frequencies
and a loss of spatial detail. This pattern suggests that FINER
might prioritize coarse information, sacrificing fine-grained
structure in favor of more generalized features. Due to the
blocky representations, the filters in FINER likely have less
variation in high frequencies, which is why the visualiza-
tions appear more uniform and less detailed compared to
ReLIFT. With a PSNR of 33.49 dB, FINER generates an
output that is less detailed and slightly blurry.

7.4. WIRE:

WIRE quickly loses visible structure across layers, with ac-
tivations fading into dark, nearly uniform representations
by the later layers. This rapid loss of detail suggests
that WIRE lacks mechanisms for retaining spatial structure
across depth, perhaps due to an architecture that does not
prioritize high-frequency detail retention. The lack of high-
variance components leads to flatter, less informative pat-
terns, which contribute to lower-quality visualizations and
limited information retention. The PSNR of 31.06 dB re-
flects significant degradation in detail, resulting in a final
output that is overly smooth and lacking in fidelity.

8. Limitations and Discussion

While our approach delivers promising results, certain lim-
itations are worth discussing. In image-generation experi-
ments, the generated outputs exhibit slight blurriness, which
we hypothesize arises from the use of the sinusoidal activa-
tion function, potentially leading to over-smoothed repre-
sentations. For 3D generation, we believe that fine-tuning
the hyperparameters of the ADM model could further im-
prove sample quality and evaluation scores. Compared
to global-based methods that struggle with high-resolution
generation, our hierarchical design effectively integrates
global context with fine-grained local details. This multi-
scale representation is crucial for downstream tasks. For
example, Functa [10] achieves CIFAR-10 classification ac-
curacies of 68.3%, 68.3%, and 66.7% for latent sizes of 256,
512, and 1024, respectively, indicating that relying solely on
larger global latents does not capture task-specific features
effectively. Moreover, our method achieves significantly
better classification performance compared to local-based
approaches [3] and pixel-based methods [8, 12, 20, 35],
demonstrating that effectively leveraging both local and
global information is crucial for downstream tasks. In ad-
dition to its superior accuracy, our approach is also highly
efficient. For instance, our higher-resolution CelebA-HQ
(642) model exhibits superior computational performance
and scalability compared to the lower-resolution CIFAR-10
(322) dataset used in Spatial Functa. The high computa-
tional demands of Spatial Functa make it challenging to
extend to 3D data, whereas our framework remains com-
putationally feasible. These results reinforce the impor-
tance of balancing global context with local details to ob-
tain more expressive and robust latent representations (see
Experiments).

We also explored alternative designs, such as using dif-
ferent activation functions for varying latent resolutions.
This resulted in a modulated activation function expressed
as:

ΣM
s=1λs sin (W0(Wx+ms×s)),

where ms×s is the modulation latent with a size of s × s,
combined with a scaling factor λs to emphasize local la-
tents. However, this modification led to a marginal reduc-
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Figure 14. Visualization of hidden layer outputs.

tion in reconstruction performance compared to the hierar-
chical design. Furthermore, we tested removing the hierar-
chical modulation module and instead introduced a learn-
able scaling modulation factor in addition to the shift mod-
ulations. While this approach simplifies the architecture, it
resulted in a noticeable drop in performance, underscoring
the importance of hierarchical modulation in achieving ro-

bust and high-quality representations.

Overall, our reconstruction model, LIFT, is distinguished
by its speed and scalability across various resolutions, mak-
ing it highly effective for both low and high-resolution data.
Moreover, LIFT converges rapidly within just a few itera-
tions, significantly shortening training durations. Notably,
the ReLIFT variant accelerates convergence even further,



proving especially beneficial when training time is con-
strained. Consequently, our framework is designed to tackle
the challenges of large-scale datasets with LIFT, as well as
address single-data scenarios using ReLIFT.
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