
DWIM: Towards Tool-aware Visual Reasoning via Discrepancy-aware Workflow

Generation & Instruct-Masking Tuning

Supplementary Material

Figure 5. Auto-Exploring Agentic Framework. The LLM agent
generates 〈Code〉 for execution, 〈Thought〉 for reasoning, or
〈Done〉 to complete the task. It dynamically generates or refines
actions while storing environmental information for incremental
reasoning.

6. Auto-Exploring Agentic Framework

Our framework dynamically generates 〈Code〉, 〈Thought〉,
or 〈Done〉 without a fixed pattern (e.g., Code follows
Thought in CodeAct [58], or Act follows Thought in Re-
Act [65]). The LLM generates 〈Code〉 for all execution
steps involving tool usage. If reasoning is required or an in-
effective action is detected by the discrepancy-aware recog-
nition step, the model outputs the corresponding informa-
tion in 〈Thought〉. This flexibility makes our model inher-
ently dynamic.

7. DWIM Qualitative Analysis

In this section, we provide a qualitative analysis showcasing
the output of each step in DWIM, as illustrated in Figure 6.
The input image, located at the top-left of each bounding
box, and the query are displayed in the light blue box. The
purple box displays the 〈Thought〉-action, the yellow box
shows the 〈Code〉-action, and the pink box presents the en-
vironment feedback, for each turn respectively. In many
cases, LLaVa-1.5 [37], one of the tools in our tool library,
fails to answer the question. In comparison, by leveraging
the tool-awareness ability, DWIM provides correct answers
by utilizing tools better suited for the question.

8. “Standard” v.s. “Discrepancy-aware”

Training Workflow Generation

In this section, we provide a qualitative analysis of the
differences between standard training workflow generation
and discrepancy-aware training workflow generation, as
shown in Figure 7. Using the standard method, the model
assumes environmental feedback is always correct under the
same auto-exploring framework. As a result, the standard

Figure 6. DWIM Qualitative Result Example

method does not check for discrepancies between feedback
information and the answer, leading to failed workflows
due to tool errors and preventing the generation of a viable
workflow for that training data point. Consequently, a large
portion of training data lacks correct workflows that yield
the right answers and is discarded, resulting in high data
waste. In contrast, discrepancy-aware training workflow
generation accounts for discrepancies between each feed-
back step and the answer to ensure that actions remain valid
while continuously refining workflows to reach the correct
final answer. This discrepancy-aware step also enables the
model to recognize when tools provide incorrect informa-
tion, which is crucial for training agent tool awareness.

Figure 7. “Standard” v.s. “Discrepancy-aware training” Training Workflow Generation

9. Analysis of Action Flagging

In DWIM, flagging action effectiveness based on both LLM
assessments and environment feedback is a prerequisite for
instruct-masking. The LLM identifies discrepancies be-
tween feedback and the expected answer by generating de-
scriptive sentences (e.g., ωRethink). We assess action ef-
fectiveness using both the content of these sentences and
the corresponding feedback. To support this, we employ
a rule-based method that flags ineffective actions based
on discrepancy-aware recognition and environmental feed-
back. These flagged actions are excluded from masking,
preventing the model from learning from mistakes. How-
ever, LLM assessment output may not fully adhere to the
output template when recognizing ineffective actions in a
workflow due to its complexity, which involves natural lan-
guage, code, and intricate environment feedback, poten-
tially leading to misflagging.

To evaluate our proposed flagging method, we conduct
a human evaluation to assess the effectiveness of flagging
in 100 workflow samples generated using the discrepancy-
aware training workflow generation method from the GQA
training set, comparing the results with our rule-based
approach. In these 100 workflow samples, 52.1% are

〈Code〉-actions, 23.5% are 〈Thought〉-actions, and 24.4%
are 〈Done〉-actions.

In DWIM, any 〈Code〉-action flagged by environment
feedback as “Traceback” is flagged as ineffective. Similarly,
a action preceding a 〈Thought〉-action (e.g., ωRethink) with
the context “however” or “rethink” is also considered inef-
fective. An action that is logically correct but produces an
incorrect result will trigger a discrepancy-aware 〈Thought〉-
action. A total of 41 ineffective 〈Code〉-actions, 3 actions
preceding a 〈Thought〉-action with the context “rethink,”
and 26 discrepancy-aware 〈Thought〉-action were flagged
as ineffective. In the human evaluation, we used the major-
ity vote from three evaluators and obtained the same results
for normal ineffective 〈Code〉-actions. Additionally, 3 more
actions triggering “rethink” or “replan” 〈Thought〉-actions
and 2 additional discrepancy-aware 〈Thought〉 actions were
identified.

As illustrated in Figure 8, all normal ineffective 〈Code〉-
actions were flagged; however, only 50% of ineffective
〈Thought〉-action preceding a 〈Thought〉-action with the
context “rethink” were detected. Although such ineffective
actions constitute only around 10% of the total sample ac-
tions, it is crucial that they are not masked and are properly
learned. The current rule-based flagging method is not en-

Figure 8. DWIM and Human Flagging of Ineffective Actions on Collected Workflows. DWIM’s flagging results are close to those of
human evaluators; however, there is still room for improvement, particularly in flagging actions that trigger “rethink.”

Table 8. Tools’ Functionality

Tools Model Name Description
LLaVa-1.5-7B BLIP2-Flan-T5-XXL GPT-4o-2024-05-13 GroundingDINO-Base

Detector ↭ Detect Object
Check Existence ↭ Check Object Existence

Simple Query Answer ↭ ↭ Answering Simple Questions with a Word or Phrase
Complex Query Answer ↭ Answering Complex Questions with a Sentence

Captioning ↭ Get Image Caption
Acquiring External Knowledge ↭ Acquire External Knowledge

Boolean to Yes/No Convert True/False to Yes/No
Image Crop Crop Images Based on Provided Coordinates

Property Matching ↭ Identify the Best-Matching Visual Property
Verify Property ↭ Verify Visual Property

Table 9. Task-specific Tool Library.

Tools Tasks
VCR EKVQA VLCU VASA GD CCQ

Detector ↭ ↭ ↭ ↭ ↭ ↭
Check Existence ↭ ↭ ↭ ↭ ↭ ↭

Simple Query Answer ↭ ↭ ↭ ↭ ↭ ↭
Complex Query Answer ↭

Captioning ↭ ↭ ↭ ↭ ↭ ↭
Acquiring External knowledge ↭

Boolean to Yes/No ↭ ↭ ↭
Image Crop ↭ ↭ ↭ ↭ ↭ ↭

Property Matching ↭ ↭
Verify Property ↭ ↭ ↭ ↭ ↭ ↭

tirely precise, particularly in complex contexts. In future
work, we aim to develop an LLM-based flagger for more
accurate flagging of ineffective actions by leveraging envi-
ronment feedback and recognition results.

10. Additional Ablation Study

We conducted an experiment where the answer is given but
discrepancies are not recognized (annotated as Given Y) as
shown in Table 10. While Given Y produces more work-
flows than the standard method, it does not outperform our
approach. Moreover, a portion of its successful workflows
result from directly copying the answer.

11. Additional Tool Awareness analysis

We evaluate models’ tool awareness based on overall per-
formance and tool utilization efficiency, as described in Sec-
tion 4. To further evaluate the improvement in tool aware-

Table 10. Additional Ablation Study: Effect of Given Y During
Workflow Generation on GQA

Fine-tune Training Workflow Generation Data Utilization (%) GQA (%)

SFT Standard 48.2 53.6
Instruct-Masking Standard 48.2 57.9

SFT Given Y 60.3 54.3
Instruct-Masking Given Y 60.3 60.9

SFT Discrepancy-aware 68.3 54.8
Random-Masking Discrepancy-aware 68.3 65.1

Masking-W-Rethink Discrepancy-aware 68.3 68.0
Instruct-Masking Discrepancy-aware 68.3 69.3

ness of DWIM compared to a frozen LLM, we conduct a hu-
man evaluation on 100 workflow samples from GQA eval-
uation results for each model. Specifically, we examine the
proportion of generated workflows that should yield correct
answers if the tools function accurately but fail in practice,
as well as the proportion of workflows that are logically in-
correct.

The evaluation results indicate that 71% of DWIM-
generated workflows and 47% of frozen LLM-generated
workflows produced correct answers. Additionally, 18%
and 28% of workflows, respectively, should yield correct
answers but failed due to tool errors. Furthermore, 7%
of DWIM-generated workflows and 23% of frozen LLM-
generated workflows were logically incorrect. Lastly, 4%
and 2% of workflows, respectively, produced correct an-
swers but were misclassified as incorrect due to evaluation
metric errors.

Based on our investigation, we observe a significant im-
provement in overall performance after training, indicating

the effectiveness of the generated workflows. Additionally,
the average tool utilization per query decreases, suggesting
improved efficiency. Moreover, DWIM has a 10% lower
failure rate than the frozen LLM in generating workflows
that should produce correct answers but fail due to tool er-
rors. This suggests that DWIM has a better understand-
ing of each tool. Besides, DWIM is less likely to misuse
tools when constructing workflows after training. Over-
all, these findings demonstrate that DWIM significantly en-
hances tool awareness.

12. Tool Library and Functionality

In this section, we introduce the details of the task-specific
tool library (Table 8), including the functionalities of each
tool and their corresponding models. Table 9 provides a
comprehensive overview of the tools included in the pro-
posed tool library and their respective functionalities. The
table is structured to showcase the capabilities of each
tool across different models (LLaVA-1.5-7B [37], BLIP2-
Flan-T5-XXL [35], GPT-4o [22], and GroundingDINO-
Base [39]) and provides a brief description of their specific
functionalities.

• Detector: This functionality, supported by Ground-
ingDINO, focuses on detecting objects within an image.

• Check Existence: GroundingDINO is also capable of
checking the existence of specific objects within a given
scene, contributing to basic visual verification tasks.

• Simple Query Answer: Both LLaVa-1.5 and BLIP2 ex-
cel in answering simple questions using a single word or
phrase. This capability is valuable for tasks requiring con-
cise and precise responses.

• Complex Query Answer: LLaVa-1.5 extends its capa-
bility to answering more complex questions, providing
sentence-level responses that demand a deeper under-
standing of the image and associated context.

• Captioning: LLaVa-1.5 further supports image caption-
ing, generating descriptive captions for input images to
facilitate contextual interpretation.

• Acquiring External Knowledge: GPT-4o is the sole tool
in this library designed to acquire external knowledge,
which is essential for tasks that require external informa-
tion beyond the given visual input.

• Boolean to Yes/No: This functionality would involve
converting boolean values (True/False) into human-
readable yes/no responses.

• Image Crop: This functionality is designed to crop im-
ages based on provided coordinates.

• Property Matching: It supports identifying the best-
matching visual property among a set of options.

• Verify Property: It is capable of verifying visual proper-
ties.

13. Failure Case Analysis

While DWIM has achieved SoTA performance, there re-
mains room for improvement in its design. In complex
cases, as illustrated in Figure 9, DWIM may fail due to er-
rors made by the LLMs, resulting in incorrect workflows or
workflows that are logically correct but fail due to tool er-
rors. In future iterations, we aim to enhance the ability of
agentic LLMs to automatically select and utilize tools for
better decision-making.

Furthermore, we investigate the primary limitations of
current frozen LLMs when presented with 10-shot exam-
ples. Through human investigation of workflows leading to
incorrect answers provided by frozen LLMs, we identified
the following common issues: lack of reasoning ability to

determine when to stop, lack of self-correction ability,
and lack of tool awareness, meaning the proposed meth-
ods are logically correct but practically flawed.

14. Computational Costs

Running on four RTX A6000 GPUs, the average infer-
ence and training time per sample (in seconds) is as fol-
lows: DWIM (9.4, 14.4), HYDRA [27] (3.6, 28.8), and
VisRep [30] (7.2, 7.2). HYDRA uses DQN for training,
which is difficult to parallelize due to time constraints, and
its official code does not support multi-GPU acceleration.
Therefore, HYDRA training was conducted on a single
RTX A6000 GPU.

To explore more computation information, we computed
the average token count per sample for LLM of each method
as shown in Table 11. Our method incurs slightly more
computation than VisRep but achieves significantly better
performance, while requiring far less than HYDRA (which
uses GPT) and still outperforming it.

Table 11. Average Input and Output Token Counts of the LLM.

DWIM (Ours) VisRep (CVPR24) HYDRA (ECCV24)

Avg. Tokens (In+Out) 5931.87 3520.44 9387.24

15. Prompt Template

In DWIM, the agentic LLM can autonomously explore the
environment through three types of actions, as outlined in
Section 3. In this section, we are providing both the prompt
template for agent auto-exploration and the Python interface
code enabling the agent’s perception capabilities.

Prompt 15.1: Auto-Exploring

Your j o b i s t o w r i t e code t o s o l v e q u e s t i o n s
a b o u t images . You have a c c e s s t o t h e
ImagePa tch c l a s s above .

Figure 9. Failure Case Analysis. Queries are presented in blue boxes, DWIM’s answers are displayed in red boxes, and ground truth labels
are shown in green boxes. Additionally, we provide the main issues causing DWIM to fail in completing the task in yellow boxes.

You w i l l be a b l e t o i n t e r a c t w i th a J u p y t e r
no tebook . You have t o c a r e f u l l y format

your r e s p o n s e s a c c o r d i n g t o t h e f o l l o w i n g
r u l e s .

1 . When you want t o w r i t e code , you must use
t r i p l e b a c k t i c k s i n s i d e a ‘<code>‘ t a g .

2 . When you want t o re turn t e x t you must use
t h e ‘< t h o u g h t >‘ t a g . Example : ‘< t h o u g h t>I
t h i n k t h i s i s t h e answer .< / t h o u g h t >‘

3 . When you a r e done , you must use t h e ‘<done
>‘ t a g wi th no c o n t e n t i n s i d e . Example : ‘<
done></done>‘

4 . The r e s p o n s e from t h e no tebook w i l l be
e n c l o s e d i n s i d e a ‘< r e s u l t >‘ t a g . Example :
‘< r e s u l t >2</ r e s u l t >‘

5 . The image w i l l be l o a d e d f o r you in a
v a r i a b l e c a l l e d ‘ image ‘ , t h e image d e t i a l
c a p t i o n i n g w i l l be p r o v i d e d .

6 . I f you can d i r e c t l y answer t h e q u e s t i o n
u s i n g a s i n g l e word or phra se , Your f i n a l
answer s h o u l d be s t o r e d in a v a r i a b l e
c a l l e d ‘ f i n a l a n s w e r ‘ .

7 . I f you need more i n f o r m a t i o n , you can w r i t e
code t o g e t more i n f o r m a t i o n from image .

8 . In each s t e p , you can on ly use a s i n g l e
a c t i o n .

9 . Take c a r e t o i n d e n t m u l t i ! l i n e code
c a r e f u l l y , and t h i n k s t e p by s t e p t o s o l v e

t h e problem i n c r e m e n t a l l y .
1 0 . Answer t h e q u e s t i o n u s i n g a s i n g l e word or

p h r a s e and s t o r e t h e answer in ‘
f i n a l a n s w e r ‘ , t h e n e x i t t h e t a s k w i th a
‘<done>‘ t a g .

1 1 . You must p r o v i d e a s o l u t i o n , and p l e a s e do
not r e f u s e t o answer even i f you a r e not

c o m p l e t e l y s u r e .
1 2 . I f ‘ f i n a l a n s w e r ‘ i s ‘ True ‘ or ‘ F a l s e ‘ ,

p l e a s e use ‘ b o o l t o y e s n o ‘ t o c o n v e r t i t
t o ’ yes ’ or ’ no ’ .

Prompt 15.2: Python Code for ImagePatch Class

c l a s s ImagePa tch :
def i n i t (s e l f , image , l e f t =None , lower

=None , r i g h t =None , uppe r =None) :
s e l f . image
pass

@proper ty
def a r e a (s e l f) :

pass

def f i n d (s e l f , o b j e c t n a m e) :
pass

def e x i s t s (s e l f , o b j e c t n a m e) :
pass

def v e r i f y p r o p e r t y (s e l f , o b j ec t na me ,
v i s u a l p r o p e r t y) :
pass

def b e s t d e s c r i p t i o n f r o m o p t i o n s (s e l f ,
ob j e c t na me , p r o p e r t y l i s t) :
pass

def s i m p l e q u e r y (s e l f , q u e s t i o n) :
pass

def c r o p l e f t o f b b o x (s e l f , l e f t , upper ,
r i g h t , l ower) :
pass

def c r o p r i g h t o f b b o x (s e l f , l e f t , upper ,
r i g h t , l ower) :
pass

def c r o p b e l o w b b o x (s e l f , l e f t , upper ,
r i g h t , l ower) :
pass

def c r o p a b o v e b b o x (s e l f , l e f t , upper ,
r i g h t , l ower) :
pass

def l l m q u e r y (s e l f , q u e s t i o n) :
pass

def b o o l t o y e s n o (b o o l a n s w e r : bool) !> s t r :
pass

