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A. Additional Visualization Results

We present additional visualization results in the supple-
mentary HTML file "videoResults.html" demonstrating our
method’s effectiveness on both single-view and multi-view
attacks through video sequences that highlight the consistent
rendering of illusory objects across viewpoints.

B. Comprehensive Dataset Evaluation

Extended Threshold Analysis. Tab. 1 evaluates 36 scenes
across three datasets: 7 from Mip-NeRF 360 [1], 8 from
Tanks & Temples [3], and 21 from Free [5], with Free scenes
categorized as EASY/MEDIAN/HARD based on different
threshold combinations. Beyond the main paper’s criteria
(PSNR > 25 on V-ILLUSORY, V-TEST PSNR drop ≤ 3), we
test various threshold combinations to assess method robust-
ness across difficulty settings and provide comprehensive
baseline comparisons.

Table 1. Attack success rates across extended threshold combi-
nations. Our method demonstrates superior performance across all
difficulty levels.

Method Success criteria
V-ILLUSORY > 25 V-ILLUSORY > 20 V-ILLUSORY > 15
V-TEST drop ≤ 8 V-TEST drop ≤ 9 V-TEST drop ≤ 10

IPA-NeRF [2] (Nerfacto [1]) 0/36 1/36 10/36
IPA-NeRF [2] (Instant-NGP [1]) 2/36 6/36 21/36
IPA-Splat 0/36 1/36 4/36
Ours 23/36 26/36 30/36

The results demonstrate our method’s superior robustness,
with success rates ranging from 64% to 83% across different
threshold combinations, significantly outperforming existing
approaches across diverse datasets and evaluation criteria.

C. Computational Efficiency Analysis

Our attack reduces GPU memory usage by 41% and Gaus-
sian points by 88% with a modest training time increase
on the Mip-NeRF 360 dataset. This stems from our noise
scheduling disrupting multi-view consistency, allowing con-
vergence with fewer Gaussians—a favorable trade-off for
attack effectiveness.

Table 2. Computational efficiency comparison. Our method sig-
nificantly reduces memory usage and model complexity.

Method GPU Memory (MB) Number of Gaussians Training Time (min)

Standard 3DGS 4,101.94 2,602,787 15.05
Ours 2,419.08 310,114 22.32

Figure 1. Computational cost comparison. Our method achieves
significant reductions in GPU memory usage and model complexity.

D. More Implementation Details
Illusory Objects. We randomly select images and masks
from the COCO 2017 dataset [4] to extract diverse, unbiased
illusory objects for our backdoor attacks.
Implementation Details. We implement our experiments
using the official 3DGS codebase [2] with default hyperpa-
rameters on NVIDIA RTX 4090Ti GPUs.

E. More Visual Results for Single View Attack
Figs. 2 and 3 demonstrate our method’s superiority in single-
view attacks across multiple scenes and datasets. While base-
line approaches like IPA-NeRF (Nerfacto) and IPA-NeRF
(Instant-NGP) often produce imperceptible or heavily dis-
torted illusory objects (as seen in the "bonsai" scene), our
approach consistently delivers clear, realistic illusions with
distinct boundaries.

F. More Visual Results for Multi-view Attack
Figs. 4–6 demonstrate our method’s superiority over IPA-
NeRF (Nerfacto and Instant-NGP) and IPA-Splat across 2,
3, and 4 poisoned viewpoints. Our density-guided approach
consistently generates clear, geometrically consistent illu-
sory objects while maintaining high rendering quality in
non-poisoned views, effectively preserving scene fidelity
regardless of the number of attack viewpoints.

G. More Visual Results for Evaluation Protocol
Fig. 7 validates our KDE-based evaluation protocol, show-
ing that attack effectiveness inversely correlates with scene
density in “hydrant” scene. Illusory objects appear more
convincing in EASY (low-density) regions than in HARD
(high-density) regions, confirming that fewer overlapping
observations increase vulnerability. This protocol establishes
a standardized benchmark for poisoning attacks while reveal-
ing connections between scene geometry and 3D reconstruc-
tion vulnerability.

H. More Visual Results for Ablation Studies
Fig. 8 presents qualitative comparisons of different attack
strategy combinations across seven Mip-NeRF 360 scenes.
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Figure 2. Qualitative comparisons on single-view attack 1. Results on the “bonsai” scene (Mip-NeRF 360 [1]), “francis” scene (Tanks &
Temples [3]), and “counter” scene (Free [5]). Both IPA-NeRF variants exhibit poor convergence on the “bonsai” scene, while our method
consistently produces clear, well-integrated illusory objects across all scenes.
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Figure 3. Qualitative comparisons on single-view attack 2. Results on the “garden” scene (Mip-NeRF 360 [1]), “horse” scene (Tanks &
Temples [3]), and “road” scene (Free [5]). Our method effectively embeds distinct illusory objects while maintaining scene consistency.

While strategies (1) direct replacement and (2) density-
guided poisoning are effective for most scenes, they show
limitations in complex environments with high view overlap
(e.g., “room”). Our experiments demonstrate that combining
these with (3) multi-view consistency disruption achieves
superior illusion embedding across all tested scenes, high-
lighting the complementary nature of our proposed methods.
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Figure 4. Qualitative comparisons on multi-view attack with 2 poisoned views. We compare the visual quality of illusory objects rendered
from two distinct viewpoints using the “stump” scene (Mip-NeRF 360 [1]).
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Figure 5. Qualitative comparisons on multi-view attack with 3 poisoned views. We compare the visual quality of illusory objects rendered
from three distinct viewpoints using the “room” scene (Mip-NeRF 360 [1]).
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Figure 6. Qualitative comparisons on multi-view attack with 4 poisoned views. We compare the visual quality of illusory objects rendered
from four distinct viewpoints using the “garden” scene (Mip-NeRF 360 [1]).
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Figure 7. Visualization of our evaluation protocol on the “hydrant” scene (Free [5] dataset).
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Figure 8. Completely qualitative comparisons of different attack strategy combinations. We visually analyze the effects of combining
three poisoning strategies: (1) direct replacement of poisoned view ground truth, (2) density-guided point cloud poisoning, and (3) multi-view
consistency disruption. Combining all three strategies achieves the most realistic illusion embeddings across various scenes from the
Mip-NeRF 360 [1] dataset, demonstrating the complementary effectiveness of our proposed methods.


	Additional Visualization Results
	Comprehensive Dataset Evaluation
	Computational Efficiency Analysis
	More Implementation Details
	More Visual Results for Single View Attack
	More Visual Results for Multi-view Attack
	More Visual Results for Evaluation Protocol
	More Visual Results for Ablation Studies

