
Task-Aware Prompt Gradient Projection for Parameter-Efficient Tuning
Federated Class-Incremental Learning

Supplementary Material

Symbols Meaning
pt

k
r The prompt for the k-th client in the r-th round of t-th task

P t−1 The prompt for task t− 1 comes from the server
pu−1 , Pu−1 The prompt for the u-th layer of the model

eu−1 A collection of image patch embeddings for the u-th layer of the model
V̂u−1 Projection matrix for the u-th layer of the model
Ct
k The model of the k-th client in the task t

St−1 The model of the server in the task t− 1

Dt
k The private data of the k-th client in the task t

Mt−1 The synthetic data of the server in the task t− 1

Table 1. The meaning of symbols.

Method Task1 Task2 Task3 Task4 Task5

IID
TARGET [3] 77.16 55.32 45.67 36.19 31.83
LANDER [2] 77.32 65.42 56.34 48.82 43.24

TPPR 92.27 83.77 78.44 72.79 65.72

NIID(1)
TARGET [3] 76.78 54.74 42.67 31.19 29.83
LANDER [2] 76.91 63.35 54.25 45.35 41.75

TPPR 90.93 81.18 74.61 65.78 61.62

Table 2. The Average Accuracy (%) on ImageNet for 5 tasks.

A. Other experiment results
A.1. Results on the ImageNet dataset
To further validate the effectiveness of our method, we con-
duct experiments on the ImageNet dataset with task quan-
tity T = 5 under both IID and NIID (1) scenarios. Table 2
presents the average accuracy across all tasks after training
each one. The results demonstrate that even in a challeng-
ing setting like ImageNet, which contains a large number
of categories and high training difficulty, our method sig-
nificantly enhances performance. Notably, compared to the
baseline, our approach achieves a substantial 20% improve-
ment, further highlighting its effectiveness.

A.2. Gradient projection analysis on different com-
ponents.

We employ the data-free knowledge transfer framework for
training. On the client side, we address knowledge forget-
ting by leveraging synthetic data M and the server model
S from the old task to distill knowledge to the current task.
Simultaneously, current private data is utilized to train the
model for new tasks. Consequently, the model’s gradient is
primarily composed of two components: the gradient from
distillation learning and the gradient from new task learn-
ing. As shown in Table 3, we evaluate the effectiveness of
two gradient projection strategies: (I) applying projection

Method Task1 Task2 Task3 Task4 Task5

NIID(0.5)
I 96.4 86.72 80.65 76.9 73.53
II 96.4 86.88 82.22 77.91 73.84

Table 3. Gradient projection analysis on different components.
The experiments are carried out on task quantity T = 5 and
Dirichlet parameter β = 0.5.

Task1

Task2

Task3

Task4

(a) CIFAR-100 (b) Tiny-ImageNet

Figure 1. Visualization of generated data for CIFAR-100 and Tiny-
ImageNet datasets.

only to the gradient from new task learning and (II) apply-
ing projection to the sum of both gradients. The results in-
dicate minimal difference between the two approaches. Our
analysis suggests that when projection is applied only to the
new task gradient, adding the distillation gradient afterward
may alter the overall gradient direction to some extent, po-
tentially disrupting its orthogonality and leading to a slight
performance drop.

A.3. Privacy analysis of generated data

As illustrated in Figure 1, we showcase the virtual data
synthesized by the server-side model on two widely used
datasets, CIFAR-100 and Tiny-ImageNet. The generated
images, as depicted in the figure, primarily consist of ab-
stract lines and indistinct contours, which exhibit a no-
ticeable disparity when compared to real images in terms
of clarity and detail. This intentional design ensures that
the synthetic data does not closely resemble actual images,
thereby preserving the privacy-centric nature of federated
learning. By leveraging such low-fidelity representations,
we effectively mitigate the risk of catastrophic forgetting in
the model without compromising the confidentiality of the
original data. The results demonstrate that our method suc-
cessfully balances the dual objectives of preserving privacy
and maintaining model performance, making it a viable so-
lution for privacy-sensitive applications.

B. Loss Function
We adopt a loss function similar to the SOTA method LAN-
DER [2], which is based on Data-Free Knowledge Transfer
(DFKT). The key to DFKT lies in generating high-quality
data related to the previous task on the server side, thereby
mitigating knowledge forgetting. LANDER [2] proposes
using label-text embedding (LTE) as an anchor, ensuring
that the features of both generated data and real data are cen-
tered around the LTE. This approach reduces the distance
between the generated data and the real data, improving the
quality of the generated data. We begin by constructing the
label text Yy for each class y using a predefined template:
“A photo of a {class name}”, where {class name} corre-
sponds to the class label. For instance, if the label is “cat”,
the resulting prompt would be “A photo of a cat.” Next, we
compute the label text embedding zy using a pretrained lan-
guage model E (i.e., text encoder of CLIP) as follows:

zy = E(Yy), ∀y ∈ Y. (1)

Notably, the embedding zy is computed once and stored
in the LTE pool P , remaining unchanged throughout the
entire training process, with no further fine-tuning of the
pretrained language model E . In order to bridge the gap
between generated data and real data, we use the following
Bounding Loss:

B(fc, zy) = max
(
0, ∥zy −W(fc)∥2 − r

)
, (2)

W(·) represents a linear projection layer to align the dimen-
sions between visual features fc and text embedding zy . r
represents a distance constraint, allowing features to clus-
ter around zy without converging entirely to it. This helps
maintain feature diversity and prevents homogenization.

B.1. The loss function of the clients
The client learns new tasks while utilizing models and gen-
erated data from old tasks for knowledge distillation. For
the new task data, we employ the cross-entropy (CE) loss
to optimize the client model using real training data. Ad-
ditionally, we impose constraints on fc via the Bounding
Loss, as defined in Eq. (2). The objective function for the
current task is formulated as:

Lcur = CE(yc, y) + λlteB(fc, ey), (3)

where yc and fc are derived from Ct
k(x), with (x, y) ∈ Dt

k.
To retain knowledge from previous tasks, we perform

knowledge distillation using synthetic data Mt−1. The cor-
responding loss function is given by:

Lpre = KL(ŷc, ŷs) + MSE(f̂c, f̂s), (4)

where the synthetic data-label pair (x̂, ŷ) is sampled from
Mt−1. Here, ŷc and f̂c are obtained from Ct

k(x̂), while ŷs

and f̂s originate from St−1(x̂). ŷs represents the output of
the classifier for f̂s. The Kullback-Leibler (KL) divergence
term is employed to transfer the logits from the previous
model to the current one, ensuring knowledge retention.

By combining the above losses, the overall loss function
for the client model Ct

k is defined as:

LC = αt
curLcur + αt

preLpre. (5)

To address the increasing challenge of retaining previous
knowledge as the ratio of old classes to new classes grows,
the scaling factors αt

cur and αt
pre are dynamically adjusted as

follows:

αt
cur =

1 + 1/κ

δ
αcur, αt

pre = κδαpre, (6)

where κ = log2

(
|Yt|
2 + 1

)
, δ =

√
|Y1:t−1|

|Yt| . Here, |Yt|
denotes the number of classes in task t, while αcur and αpre
represent the base scaling factors.

B.2. The loss function of the server
The loss function on the server is mainly used to facilitate
the generation of old task data. Firstly, we randomly sample
a pseudo label ŷ from a categorical distribution and retrieve
the corresponding LTE zŷ from the P (i.e., zŷ ∼ P), which
serves as the input to the noisy layer Z . Subsequently, the
representation Z(zŷ) is fed into the generator G to produce
synthetic images x̂:

x̂ = G(Z(zŷ)− µ)/σ. (7)

where Z consists of a Batch Normalization (BatchNorm)
layer followed by a single Linear layer. µ and σ are learn-
able mean and standard deviation.

To effectively facilitate knowledge transfer, the synthetic
data must satisfy two key properties: similarity and diver-
sity.
Similarity. The synthetic data x̂ should closely resemble
real training data. However, since direct access to client
data is unavailable, we enforce this similarity by aligning
the logits of the previous model St−1 with the pseudo la-
bel ŷ. This alignment is achieved by minimizing the cross-
entropy (CE) loss between the prediction of St−1 on x̂ and
the pseudo label ŷ, formulated as follows:

Loh
g = CE(ŷSt−1 , ŷ), (8)

where ŷSt−1 denotes the predicted label of St−1 for the syn-
thetic sample x̂.
Diversity. To mitigate the risk of generating highly similar
images, an additional discriminator, denoted as the student
network Q is introduced. Specifically, for the synthetic im-
ages x̂, Q is trained to minimize the discrepancy between
its predictions and those of the server (teacher) model:

LQ = KL(ŷQ, ŷSt−1) + MSE(f̂Q, f̂St−1), (9)

where ŷQ and f̂Q are derived from Q(x̂).
To encourage the generator to produce diverse images

of the previous server model, the negative KL loss is mini-
mized:

Ladv
G = −ωKL(ŷQ, ŷSt−1), (10)

where ω = 1(argmax(ŷSt−1) ̸= argmax(ŷQ)), 1(P) is
an indicator function that returns 1 if P is true and 0 other-
wise.

The Bounding Loss is used to ensure synthetic images
remain within the LTE area:

Llte
G = B(f̂St−1 , zŷ). (11)

The final objective for the generator G, noisy layer Z ,
and learnable parameters µ and σ is:

LG,Z,µ,σ = Ladv
G + λohLoh

G + λlte−gLlte
G , (12)

with λoh = 0.5, and λlte−g = 5 in all experiments.

C. Theoretical foundations
As previously discussed in the main text, knowledge forget-
ting can be mitigated when the gradient of the current task
maintains orthogonality with respect to the knowledge of
previous tasks. From a modeling perspective, the preven-
tion of knowledge forgetting essentially requires that for a
given input et, the model’s output after learning a new task
t+1 should remain consistent with its output immediately
following the learning of task t. This relationship can be
formally expressed by the following equation:

fθ(p
t+1, et) = fθ(p

t, et) (13)

where et denotes the feature embeddings from the old task
t, pt and pt+1 denotes the prompts trained at task t and
t+ 1, respectively. θ is the model parameter. This formula-
tion ensures that the acquisition of new knowledge does not
interfere with the retention of previously learned informa-
tion, thereby maintaining the model’s performance across
sequential tasks. To achieve Eq. (13), we begin with the
implementation of prompt-based continual learning (PCL).
In this framework, after training task t + 1, we concate-
nate the prompts pt+1 with the embedding sequences et

(i.e., inputs from task t) along the embedding dimension:

Zt+1
t =

[
pt+1

et

]
. Using the weight matrices Wq , Wk, and

Wv , PCL leverages a transformer architecture to compute
the query Qt+1

t = WqZ
t+1
t and key Kt+1

t = WkZ
t+1
t .

The attention matrix is then computed as:

At+1
t = softmax

(
Qt+1

t Kt+1T

t√
d/h

)
. (14)

Here, the denominator serves as a normalization factor, so
our focus shifts to the numerator Qt+1

t Kt+1T

t , which can

be expanded as WqZ
t+1
t Zt+1T

t WT
k . Notably, the visual en-

coder weights Wq and Wk remain frozen during training,
leaving the trainable parameters as:

Zt+1
t ·Zt+1T

t =

[
pt+1

et

] [
pt+1T et

T
]
=

[
pt+1pt+1T pt+1et

T

etpt+1T etet
T

]
.

(15)
In contrast, the previous embedding Zt

t is constructed by
concatenating the prompts trained on task t with the em-
bedding sequences et:

Zt
t · ZtT

t =

[
pt

et

] [
pt

T
et

T
]
=

[
ptpt

T
ptet

T

etpt
T

etet
T

]
. (16)

To satisfy Eq. (13), that is, let Zt
t ·ZtT

t = Zt+1
t ·Zt+1T

t , the
following system of equations be obtained:

pt+1pt+1T = ptpt
T
,

etpt+1T = etpt
T
,

pt+1et
T
= ptet

T
.

(17)

we decompose pt+1 into pt and an update term ∆p, where
∆p represents the gradient of prompts during task t + 1
training. Expanding the first condition:

pt+1pt+1T = (pt +∆p)(pt +∆p)T

= ptpt
T
+ pt∆pT +∆ppt

T
+∆p∆pT .

(18)

Neglecting the higher-order infinitesimal term ∆p∆pT ,
the condition pt+1pt+1T = ptpt

T holds if pt∆pT = 0.
Similarly, transforming the second condition:

etpt+1T = et(pt
T
+∆pT) = etpt

T
+ et∆pT = etpt

T
.

(19)
Eliminating etpt

T from both sides gives et∆pT = 0.
Notably, this condition also satisfies the third term in Eq.
(17) since etpt+1T is the transpose of pt+1et

T . Thus, the
key observation is that constraining the prompt gradients
using the following conditions effectively mitigates forget-
ting: {

et∆pT = 0,

pt∆pT = 0.
(20)

Strictly speaking, let (et + pt)∆pT = st∆pT = 0 is
not entirely equivalent to Eq. (20). However, based on the
conclusions of method PGP [1], enforcing st∆pT = 0 can,
to some extent, approximate the effect of Eq. (20). Our
analysis suggests that while st∆pT = 0 does not directly
derive Eq. (20), both share the same fundamental objective:
ensuring the prompt gradient remains orthogonal to prior
knowledge (et and pt), thereby preventing interference. Ex-
perimental results confirm that this approach can mitigate

catastrophic forgetting to some degree. A more rigorous
proof remains an open direction for further exploration. It
is worth noting that the above proof is for ordinary con-
tinuous learning scenarios. In Federated class-incremental
learning, due to data being scattered across clients, we rede-
fine st using synthetic data and aggregated prompts in the
server.

References
[1] Jingyang Qiao, Xin Tan, Chengwei Chen, Yanyun Qu, Yong

Peng, Yuan Xie, et al. Prompt gradient projection for contin-
ual learning. In ICLR, 2023. 3

[2] Minh-Tuan Tran, Trung Le, Xuan-May Le, Mehrtash Harandi,
and Dinh Phung. Text-enhanced data-free approach for fed-
erated class-incremental learning. In CVPR, pages 23870–
23880, 2024. 1, 2

[3] Jie Zhang, Chen Chen, Weiming Zhuang, and Lingjuan Lyu.
Target: Federated class-continual learning via exemplar-free
distillation. In ICCV, pages 4782–4793, 2023. 1

