A.l. Table of Contents

This supplementary material includes:

e Sec. A.2: Provides additional background and related
works on token pruning strategies.

e Sec. A.3: Provides details on the Query-Aware Oracle.

e Sec. A.4: Provides additional details on Sparse VILA.

e Sec. A.5: Provides additional details on our experimen-
tal setting and multi-turn benchmark.

e Sec. A.6: Includes additional quantitative results on
image benchmarks and video benchmarks.

e Sec. A.7: Includes additional details of multi-turn V-
NIAH benchmark.

e Sec. A.8: Qualitative visualizations of multi-round con-
versation.

e Sec. A.9: Visualizing token retrieval

A.2. Additional Related Works

In this section, we provide an overview of token reduction
and KV Cache compression strategies related to improving
the efficiency of vision and language models.

Token reduction. Techniques that reduce tokens in run-
time have emerged as promising approaches to accelerate the
throughput of transformer architectures, however often come
at the expense of performance degradation [19, 44, 48], or
costly retraining [19, 38, 57]. Many of the past works in this
domain, have focused on reducing the computational com-
plexity of vision transformer models through token pruning
[12, 23], merging [3, 17], or learning new token representa-
tions [48]. Despite promising approaches to vision encoders,
with the rise of VLM architectures, it is natural to question
if these methods can retain their generalizable performance
and latency improvements. Reducing tokens at the visual en-
coder stage can be quite successful in speeding up the entire
VLM workflow. In particular, Token Merging [3] merges
tokens in the ViT, however, this was shown to scale poorly
in complex vision language tasks [60]. In VILA [24], the
authors showed that 2x down-sampling can help significantly
after the vision encoder, hence speeding up both context and
generation stages. However, any further native reduction
caused significant performance degradation. Subsequently,
works such as LLaVA-PruMerge[39], HIRED [1] and Vi-
sionZip [55] were proposed to “selectively” reduce tokens af-
ter the visual encoder. The refined approach to token pruning
taken by these methods reduced the performance gap. How-
ever, at higher sparsities, they suffer significant performance
degradation due to the erosion of query-related context, as
shown in Table 1. Ultimately, this led to the rise of query-
aware approaches such as FastV [4] and SparseVLM [60].
By delaying pruning until the LLM stage, the methods gain
the advantage of leveraging query information to minimize
the performance gap. Unfortunately, this approach does not
scale to the real-world setting of multi-turn conversation, as

shown in Figure 1. Hence, there is a clear gap in performance
that neither query-aware or query-agnostic can solve in their
own right. Addressing these limitations, our proposed frame-
work divides the total sparsity load between context stage
pruning in a query-agnostic manner and a decoding stage
query-aware retrieval system. By selecting a highly sparse
set of visual tokens to participate in the decoding stage, our
approach can yield significant end-to-end speedup while
maintaining superior performance in multi-turn settings. An-
other orthogonal line of research explored using language
models to compress visual tokens (VoCo-LLaMA [56]). In
their work, VoCo-LLaMA introduced visual compression
during the instruction tuning phase to condition the model
for faster inference, meanwhile, SparseVILA employs a
training-free approach to inference acceleration in multi-turn
conversation.

KV Cache Compression. In the realm of long-context
LLM inference and serving, the large size of the KV cache
introduces substantial time and memory overhead, neces-
sitating the need for effective KV compression techniques.
Recent works have proposed various algorithms to manage
and reduce KV cache size while maintaining model accuracy.
StreamingLLLM [51] addresses infinitely long text sequences
by preserving attention sinks and maintaining a finite KV
cache in the recent window. SnapKV [22] predicts important
tokens within a specified observation window prior to gener-
ation, helping to minimize unnecessary storage. H20 [62]
selects a limited budget of essential KV cache entries based
on cumulative historical attention scores. These methods
discard portions of the KV cache based on past attention
scores or current context; however, tokens discarded in this
process may still hold relevance for future tokens, potentially
resulting in information loss and degraded performance in
multi-turn conversation tasks. To address this limitation,
Quest [42] estimates approximate attention scores by com-
puting upper-bound attention scores for each KV cache page,
selectively preserving important KV entries. LazyLLM [11]
takes a deferred approach by selectively computing KV pairs
only for tokens crucial to the next token prediction, postpon-
ing the computation of other tokens until they become rele-
vant. DuoAttention [50] differentiates between retrieval and
streaming attention heads, applying a complete KV cache to
retrieval heads while maintaining a lightweight, fixed-length
KV cache for streaming heads. These approaches effectively
reduce latency during decoding or prefilling stages by fo-
cusing on critical tokens. However, these methods primarily
focus on text-based applications and overlook potential op-
timizations for image and video understanding tasks. Such
tasks often exhibit greater sparsity due to the inherent tempo-
ral and spatial structure of video data, which provides further
opportunities for performance enhancement.

A.3. Query-Aware Oracle

In this section, we detail the implementation of the query-
aware oracle used in Section 2.2. In particular, we deliber-
ately chose to use an oracle as it should, in theory, represent
the upper bound of any query-aware method that could be
introduced. Hence, if the limitation of multi-turn scaling
applies to an oracle, it is a safe assumption that query-aware
approaches will exhibit the same challenges.

Design. We include the implementation of our oracle in
Algorithm 1. The query-aware oracle uses a greedy approach
to converge to the optimal, query-informed tokens that guide
the LLM in producing consistent responses with the vanilla
implementation. By iterating through the configurations
greedily, this method is quite costly in time, however, it
serves as an ideal upper bound for current and future query-
aware approaches as it factors in the question and original
LLM response in order to guide the selection of tokens.

Algorithm 1 Query Aware Oracle Design

sys, visual, query = input_tokens
Obtain Initial Output
response = llm(cat((sys, visual, query), 1))
Embed response
emb = embed(response)
Define token indices:
num_v = visual.size(1)
token_indices = torch.arrange(num_v)
token_mask = torch.ones(num_v, dtype=bool)
while num_removed < sparsity * visual.size(1):
scores = {}
shuffled_indices = shuffled(token_indices)
for token in shuffled_indices:
if token_mask[token] = False:
continue
#* remove token and check response
token_mask[token] = False
c_vis = visual[:, token_mask]
new_r = llm(cat((sys, c_vis, query), 1))

cosine embedding comparison

token_score = cos_dist(emb, embed(new_r))
token_mask[token] = True

scores[token] = token_score

worst_token = min_key(scores)
#* remove token:
token_mask[worst_token] = False
num_removed += 1

#* Obtain pruned response:
visual = visual[:, token_mask]
response = llm(cat((sys, visual, query), 1))

A.4. SparseVILA: Additional details

In this section, we provide additional details regarding
SparseVILA’s implementation and design choices.

A 4.1. Context Stage Pruning

In this section, we provide an overall algorithm to prune
visual tokens in the context stage. Algorithm 2 presents
the default implementation of SparseVILA for context stage
pruning with a SigLip [58] visual encoder.

Algorithm 2 Context Stage Pruning after the visual encoder

Tensor Shapes: (B, H, S, S) | (B, H, S)
attn_score, hidden_states = input

Compute Outer Sum

attn_score = attn_score.sum(dim=(0,1))

Compute Mean-Column Sum

salience = attn_score.sum(dim=1) / S

Obtain question agnostic token mask

idx = salience > salience.quantile(sparsity)
Prune Unimportant Tokens

hidden_states = hidden_states[:, idx]

Considerations for CLIP [37]. As stated in Section 3.1,
when a cls token is present, we simply adapt the computation
of Mean-Column Sum as: salience = attn_scorel0,1],
essentially determining the influence that all sequence tokens
have on the class token.

Considerations for multi-scale/frame samples. Multi-
Frames and Multi-scale data often increase the inherent batch
size of the sample. In this case, it no longer makes sense
to remove the same token indices across different frames
or scales. Hence, we simply restrict a consistent number
of tokens to be removed but not which indices are selected.
The result prevents the formation of a jagged tensor as the
same number of tokens are selected per sample along the
batch. We feel that more advanced strategies could better
aid this performance, i.e. considering temporal relationships,
however, we leave this for future works.

A.4.2. Generation Stage Retrieval

In this section, we provide an overall algorithm to retrieve
visual tokens in the generation stage. Algorithm 3 presents
the default implementation of SparseVILA for decoding
stage token retrieval, compatible with FlashAttention2 [6].

Algorithm 3 Single Layer Query Aware KV Selection

Tensor Shapes: (B, H, Q_len, D) | (B, H, KV_len, D)
g_proj, k_proj = input

d_k = g_proj.size(-1) ** 0.5

Compute attn weights (B, H, Q_len, KV_len):
attn_scores = q_proj @ k_proj.transpose(-2, -1)
attn_weights = F.softmax(attn_scores / d_k, dim=-1)
Extract Visual tokens using "start” and "end”
attn_vis = attn_weights[:, :, v_start:v_end]

Compute Mean Column Sum

salience = attn_vis.sum(dim=(1,2)) / (H*Q_len)

Obtain query aware KV indices

idx = salience > salience.quantile(sparsity)

Create compact KV Cache

packed_kv = (k_cache[:,:,idx], v_cache[:,:,idx])

A.4.3. Additional details on KV cache compression

techniques
Quest [42] Quest is a query-aware method to accelerate

decoding throughput by selecting an active subset of the KV
cache per generation step. By selecting a new KV subset
for each generated token, Quest reports speedup only at very
high context lengths, such as beyond 32K with Llama2 [45],
whereas SparseVILA achieves speedup at just 3K context
length. Rather than once per generation step, SparseVILA
compresses the KV cache once per question/conversation
turn, avoiding the latency overhead seen in Quest. As shown
in Table A1, Quest performs worse than SparseVILA over-
all and degrades further at larger page sizes. Additionally,
combining our query-aware strategy with Quest’s generation
strategy yields slightly worse performance than our Spar-
seVILA while being significantly slower, suggesting that
generation-token aware sparsity is unnecessary for efficient
VLM inference.

Table A1l. Compares and contrasts SparseVILA with LLM query-
aware decoding strategy, Quest [42]. In all cases, we leverage
SparseVILA’s context pruning framework.

CTX Framework GEN Framework Context Decoding Sparse Attn VideoMME

Vanilla Vanilla 64K 64K 64K 59.7

SparseVILA SparseVILA 16K 1K IK 60.3
SparseVILA Quest [42] Pg=128 16K 16K 1K 579
SparseVILA Quest [42] Pg=16 16K 16K 1K 58.8
SparseVILA SparseVILA + Quest [42] Pg=16 16K 4K 1K 59.4

SnapKV [22] SnapKV leverages an observation window
towards the end of the context prompt in order to determine
which parts of the KV cache should be kept for generation.
Drawing a parallel to VLMs, the observation window can
be seen as the question being pre-filled, in order to make
this approach query-aware. However, a key contribution to
their work is memory savings via discarding the original
KV cache after selection. This would make it ill-suited for

multi-turn conversation as they lose access to the original
visual tokens. Additionally, they introduce larger overhead
into the selection process with pooling operations. One
advantage of their method is selecting tokens in a “head-
aware” approach. Fortunately SparseVILA can also add this
degree of freedom without incurring additional latency, by
simply sorting two-dimensional IDs rather than averaging
over the head dimension. Empirically we find that this added
degree of freedom does improve performance on image-
centric evaluation and is a viable extension of SparseVILA—
SparseVILA + SnapKV [22]).

Table A2. Compares and contrasts SparseVILA with LLM
observation-based decoding strategy, SnapKV [22]. In all cases,
we leverage SparseVILA’s context pruning framework.

CTX Framework GEN Framework Context Decoding DocVQA
Vanilla Vanilla 3K 3K 74.4
SparseVILA SparseVILA 1K 500 60.8
SparseVILA SnapKV [22] 1K 500 59.3
SparseVILA SparseVILA + SnapKV [22] 1K 500 61.5

A.4.4. Discussion on SoTA Overheads

By default, our latency comparisons in the main table
do not consider the different overheads introduced by the
complexity of each method, and instead simply consider the
effect of reducing token on context and generation speeds.
For Query-Aware methods, we do account that their pruning
approaches are deferred until the third layer however we
assume the cost of each strategy metric computation is negli-
gible. In this section, we provide a deeper comparison of the
CUDA-Time cost in (ms) that each method incurs in comput-
ing their metrics. The purpose of this analysis is to examine
the real-world scalability of these methods beyond the la-
tency gains from theoretical token reduction. Interestingly
we find, that although methods such as SparseVLM [60]
do achieve speedup from reducing the number of tokens,
their overhead from metric computation and token recycling
is quite large — hence they can only achieve speedup at a
high enough token sparsity ratio. Likewise, methods such
as PruMerge [39] incur significantly higher costs in their
context stage pruning strategy due to the clustering of tokens
in comparison with SparseVILA. Table A3 illustrates the
low overhead cost associated with both context and decoding
stage components of SparseVILA.

Table A3. Compares the context overhead of SparseVILA with
other SoTA approaches on LLaVA-NeXT-7B [28] assuming a con-
text length of 3K visual tokens and 100 query (question) tokens.
Note, for FastV [4] and SparseVLM [60], we have already ac-
counted for the first three dense layers in the main table speedup
results, hence this additional overhead is not considered below.
The default vanilla implementation incurs 425.8 ms context pre-
filling time and 1.89 s decoding time — overhead of the metrics are
computed relative to this baseline.

Method Module Stage Sparsity CUDA Time (ms) Overhead
PruMerge [39] Vision Tower Context 83.33% 132.8 31.2%
VisionZip [55] Vision Tower Context 83.33% 1.41 0.33%
HIRED [1] Vision Tower Context 83.33% 0.58 0.14%
SparseVILA Vision Tower Context 66.67% 0.87 0.20%
FastV [4] LLM Context 83.33% 21.1 5.0%
Sparse VLM [60] LLM Context 83.33% 35.5 8.3%
SparseVILA LLM Decoding 90% 14.3 0.75%

A.4.5. Discussions on Sink & Retrieval Tokens

In this section, we discuss the emergence of sink and
retrieval tokens throughout the VLM pipeline. In Figure Al
we explore the emergence of sink and retrieval tokens in
the LLM. Profiling the attention maps in the LLaVA-1.5
architecture, we find that sink tokens and retrieval tokens
are distributed over different layers of the model. In the
early layers, we find there to be a strong focus on select
tokens, which remain consistent regardless of the query. We
additionally allude to this in Section A.8. As we progress
deeper into the network, we begin to notice retrieval tokens
emerge — i.e. query-dependent tokens. Nonetheless, the sink
tokens remain, however at a lower strength. This insight
influenced the design of Sparse VILA by acknowledging that
capturing both sink and retrieval tokens would require a full
context stage (i.e. the computation of attention scores at
every layer). Using this, we were able to design SparseVILA
as a query-aware approach to select both sink and retrieval
tokens simultaneously after the pre-filling/context stage. Pre-
vious methods that would prune tokens in early LLM layers,
would be unable to capture retrieval tokens, as the attention
patterns don’t emerge until deeper in the network. Along
this line, we compute the IoU of token indices selected over
38 questions in multi-turn on the GQA dataset. Interestingly,
we find that using the scores from Layer 2 retains roughly
the same tokens over different queries, indicating a high sink
token selection. If we shift this to Layer 19 we are able
to capture more retrieval tokens. Finally, SparseVILA runs
the selection at every layer hence achieving a better balance
between capturing sink and retrieval tokens.

A.5. Experimental Details
A.5.1. Benchmark Details

Following our description in Section 4, we provide fur-
ther context on the datasets and benchmarks used. Our

image benchmarks include tasks such as text recogni-
tion (TextVQA [40], DocVQA-Validation [35]), struc-
turalized content understanding (InfoVQA-Validation [36],
ChartQA [34]), general capability (MME [10]), mathemat-
ics (ScienceQA-Img [31]), hallucinations (POPE [21]), and
complex visual question answering (GQA [15]). We evalu-
ate SparseVILA on two long-context multiple-choice and vi-
sual question-answering video benchmarks (Video-MME [9]
and MLVU [63]), in addition to a free-text long-generation
GPT-aided evaluation on VideoChatGPT [33]. Finally, we
perform analysis on the Visual Needle in a Haystack bench-
mark (V-NIAH) [53, 59]. For this benchmark, we used the 5
queries associated with Imms-eval/needle embedded in a
long 2-hour+ video from previous works [53].

A.5.2. Baselines

Existing SoTA methods were primarily designed for
single-round evaluation hence we had to adapt Sparse-
VLM [60] and FastV [4] to multi-turn conversation. To
support multi-round evaluation, we prefill the system, image,
and initial query tokens to guide the visual token reduction
for FastV [4] and SparseVLM [60]. The system and remain-
ing image tokens are stored within the layer’s KV cache to
be re-used in each query associated with the target image.

A.5.3. Multi-Turn Evaluation Benchmarks

Algorithm 4 Multi-Round Evaluation Benchmark

Input Tokens

system, visual, contexts = sample_tokens

Prefill the model

kv_cache = model.prefill((system, visual))

Number of system + image tokens

num_sys_img = kv_cache.size()

response = []

for g_num in range(len(contexts)):
Prefill Question g_num
kv_cache = model.prefill(context[g_num], kv_cache)
Generate Response:
kv_cache, resp = model.generate(kv_cache)
response.extend(resp)
Evict Q&A from kv_cache
kv_cache.reset_to(num_sys_img)

return response

As discussed in Section 4, we introduce a new evaluation
framework to support the assessment of multi-turn conver-
sation efficiently. As previously noted, our cache eviction
strategy, under this setting, preserves question independence,
promotes reliance on visual cues, and optimally increases the
efficiency of the inference pipeline by removing redundant
pre-filling operations. We include an algorithmic overview
in Algorithm 4.

e N
Layer2 Layer 19 T :
:
Question: What type of . :
watercraft is the white :
i airplane flying above? .
Sailboat v/ Sailboat v/ . Sailboat v/ .
:
PO ST SO . - = :
: Question: How large are : o .
i the sailboats underneath .
the boats? .
Method loU (38 Rounds) :
Layer 2 70% E
Layer 19 21% Large X Small v : Small v
SparseVILA 40% Captures Sink Tokens Captures Query-Aware Tokens . Captures Sink & Query-Aware .

e e T R RS)

Figure A1l. Visualization of the attention maps projected on the input image for LLaVA-1.5 [27] over different queries. By migrating sparsity
into the decoding stage, Sparse VILA enjoys the benefits of capturing different layer’s attention scores, hence leveraging both sink and

retrieval tokens.

VideoChatGPT Consistency

Prompt 1: <video>\n What game are the teams playing on the basketball court?

Vanilla: "The teams are playing dodgeball on the basketball court.”
SparseVILA: "The teams are playing dodgeball on the basketball court."

Prompt 2: Can you describe the sports activity happening on the basketball court?|

Vanilla: "The video shows a group of people playing dodgeball on a basketball
court. They are wearing various colored clothes and are engaged in a game of
dodgeball. The ball is thrown and caught by the players, and they continue to
play."

SparseVILA: "The video shows a group of people playing dodgeball on a
basketball court. They are wearing various colored clothes and are engaged in a
game of dodgeball. The ball is thrown and caught by the players, and they

continue to play."

Figure A2. Sample Qualitative Visualization of the Vanilla implementation and SparseVILA on the Consistency subset of the VideoChat-
GPT [33] dataset for video captioning. This scene depicts a dodge-ball game being played on a basketball court. We have included two

temporally sequential scenes above.

A.6. Quantitative Results

In this section, we include additional quantitative exper-
iments validating SparseVILA’s robustness on a variety of
VLM architectures.

A.6.1. Image Benchmarks

In this section, we evaluate SparseVILA with query-
agnostic approaches to further bolster our claims on compat-
ibility and performance. We additionally include extensions
of SparseVILA to frontier models.

A.6.1.1. Query Agnostic Comparisons

We evaluate SparseVILA against query-agnostic ap-
proaches of efficient VLM inference. Empirically we derive
the following 2 findings: (1) At a given latency, Sparse-

VILA will achieve better results due to the migration of
sparsity from the context to the decoding stage, and (2) Ap-
plying SparseVILA to existing query-agnostic strategies can
significantly improve their performance on image-centric
benchmarks.

A.6.1.2. Frontier Models

We evaluate SparseVILA on several state of the VLM
architectures including, LLaVA-1.5 [27], VILA-1.5 [24],
Qwen2-VL [46], and the most recently released NVILA [30]
architecture.

A.6.2. Video Benchmarks

We include shorter context length experiments with
LongVILA [53] to support additional SoTA comparisons

Table A4. Extending SparseVILA with orthogonal context-stage
pruning methods. Previous methods such as VisionZip [55] and
HIRED [1], introduce carefully designed frameworks to leverage
optimal token information from the vision tower. In this table,
we compare the added benefit that SparseVILA brings to these
strategies on image-centric benchmarks. We compare performance
ata 1.48x speedup in E2E latency. In all cases, we outperform their
implementations by introducing our decoupled sparsity framework
to migrate reduction into the decoding stage.

% of Visual Tokens ~ ChartQA DocVQA' InfoVQA" Avg.
Pre-filling Decoding Improvement (1)
Max. Rounds # 5 13 35
LLaVA-NeXT-7B [20] 100 100 50.7 74.4 377 -
+SparseVILA 3333 10 399 54.4 30.8
+ [1] -
+SparseVILA 3333 10 343 49.7 29.5 1T 4.6%
+ [55] -
+SparseVILA 3333 10 36.6 53.8 304 T 1.7%

such as FastV [4] and SparseVLM [60]. We also include
results on the NVILA [30] model in Table A6.

VideoChatGPT Temporal

Prompt 1: <video>\n What happens after the man cranks the lever on the sailboat?

Vanilla: "After the man cranks the lever on the sailboat, the camera turns to a
white sailboat with a red sail sailing on the ocean."

SparseVILA: "After the man cranks the lever on the sailboat, the camera turns to a
white sailboat sailing on the ocean with a red sail."

Figure A3. Sample Qualitative Visualization of the Vanilla im-
plementation and SparseVILA on the Temporal subset of the
VideoChatGPT [33] dataset for video captioning. In this particular
sequence, the video depicts a man cranking a lever on the sailboat,
followed by a visual of the boat sailing on the ocean. We have
included two temporally sequential scenes above.

A.7. Multi-Turn V-NIAH

Vanilla SparseVILA

Depth Percent (%)
S
Adcur
5
Ac

D 0 SPSOLOLOSLOSOSDNOS 9 S0 SOSOS DSOS OL SO S OS
I N e e SN VNSNS ATAN A A A A 0
me Count

Frame Count (#) Frame Count (#)

Figure A4. Comparing the baseline and SparseVILA on V-NIAH
up to 500 Frames (128K context) on LongVILA-Qwen2 [53].

In this section, we provide additional details on how a

multi-turn setting was constructed for the V-NIAH bench-
mark. We leverage the V-NIAH benchmark dataset from
LongVILA [53] and LongVA [59]. There consists of 5 nee-
dles and N haystacks, where N is the number of frames. To
facilitate a multi-turn setting, we embed all needles along-
side the haystack. When prompting the LLM with one of the
questions, the other needles act synonymously as haystack
frames and should not affect the retrieval ability of the LLM
if it can retrieve the correct frame. With query-aware pruning
methods that remove tokens after the first query, the remain-
ing needles may be pruned alongside the haystack, hence the
model would exhibit performance degradation.

To account for the depth sensitivity, we run re-prefilling
at each depth providing the first question, to re-prune the
context and then prompt the target question to test the re-
trieval. In methods such as Sparse VLM [60] or FastV [4],
pruning in the context stages in a query-aware manner risks
discarding the needle and hence being unable to respond
to subsequent queries. In SparseVILA, we leverage heavy
decoding sparsity which is query-aware and does not impact
the KV cache that gets transferred over each turn of con-
versation, hence we can prune effectively per query without
the risk of impacting future rounds. In Figure A4 we com-
pare the long context performance of SparseVILA, and show
retained performance up to 500 Frames on LongVILA.

A.8. Qualitative Visuals

In this section, we include additional qualitative visual-
izations of SparseVILA on the VideoChatGPT dataset. This
benchmark features context lengths up to 64K and moderate
generation lengths as a video captioning dataset. In several
examples, we can see a positive correlation between the
response produced by the Vanilla implementation and Spar-
seVILA. In Figure A3 we show that SparseVILA preserves
the primary message, despite a slightly different formatted
output. Both responses resemble the same action and ac-
curately depict the action portrayed in said video. In some
cases, such as Figure A2, SparseVILA is able to exactly
match the output of the Vanilla implementation over multi-
ple rounds. Both the vanilla and SparseVILA are evaluated
in a multi-turn setting for both prompts in Figure A2. Since
both responses are correct, we intuitively illustrate VLM’s
inherent support for multi-turn conversation, and once again,
demonstrate that SparseVILA can accurately and effectively
support this setting, unlike previous query-aware pruning
methods.

A.9. Visualizing Token Maps

In Figure A5 we include visualizations of the tokens
pruned during the context stage, and those retrieved per
query. As detailed in Section 4.5, the heatmap illustrates the
frequency that a specific token was selected from the KV

Table AS. Image Benchmark. We extend SparseVILA to various Frontier Models on a multi-turn evaluation of 8 visual language benchmarks
following the setting described in Section 4. T Qwen2VL-7B results are computed with Imms-eval within the range of [1, 12] million pixels.

% of Visual Tokens GQA MMES™ SQA'! POPE VQA' ChartQA DocVQA' InfoVQA' Avg.

Max. Rounds # 92 4 11 18 2 5 13 35
o LLaVA-1.5-7B [24] 100 619 1866.73 696 854 579 20.8 27.6 25.7 55.3
> +SparseVILA 8.3 59.2 1758.1 685 84.8 57.1 18.8 24.5 24.8 53.2
f VILA-1.5-13B [24] 100 64.5 1843.1 80.0 85.8 65.2 52.1 58.3 36.1 66.8
+SparseVILA 20 64.1 1850.2 79.8 855 65.1 48.7 54.2 33.8 65.5
Qwen2VL-7B [46]" 100 63.7 20654 - 88.6 78.0 72.9 OOM OOM 81.3
+SparseVILA 8.3 63.1 2036.6 - 874 770 68.9 OOM OOM 79.6
NVILA-8B [30] 100 64.9 2060 969 886 80.0 82.7 85.1 59.9 82.6
+SparseVILA 25 64.8 2058 972 887 792 82.0 83.7 58.8 82.2

Table A6. Multi-Round Video Benchmarks. We present additional multi-round evaluations on 2 video benchmarks following the multi-turn
setting described in Section 4. We show impressive retainment of performance on long-context models such as LongVILA [53].

% of Visual Tokens # Frames VideoMME w/o subtitle MLVU
Pre-filling Decoding Overall Short Medium Long
Max. Rounds # 3 3 3 3 20

NVILA-8B-Video [30] 100 100 256 63.7 75.0 62.3 539 703

+SparseVILA 75 25 256 62.0 74.9 59.6 51.6 694

+SparseVILA 50 25 256 61.3 74.3 59.1 50.3 69.0
LongVILA-Llama3-8B [53] 100 100 256 48.7 60.7 48.1 37.3 -

+SparseVILA 75 25 256 48.8 60.9 48.1 37.4 -
LongVILA-Qwen2-7B [53] 100 100 32 59.2 72.8 56.6 48.3 72.3

+ (4]

+ [60]

+ [52]

+ [55]

+ [1]

+SparseVILA 100 12.5 32 59.4 72.7 56.7 48.8 72.1

+SparseVILA 50 25 32 59.8 73.0 57.2 49.1 72.9

cache over all layers — hence we are visualizing the frequency
selection of tokens in the image. Notably, SparseVILA is
able to capture both visual attention sinks and retrieval to-
kens to support accurate and efficient generation. In the first
case of Figure A5 we can see a strong retrieval for the man
on the bike for the first prompt and the car/white sign on the
right for the second prompt. Likewise, the second sample
shows a crisp localization of the car in the first prompt.

Context Stage Sparsity

Decoding Stage Sparsity

Prompt 1: Tell me about the person on the bicycle? Prompt 2: Tell me about the car passing the white sign on the right?

SparseVILA: "The person on the bicycle is a man who is riding his bike down a busy SparseVILA: "The car passing the white sign on the right is a silver car. It is driving down the
street. He is wearing a backpack, which suggests that he might be carrying some street alongside other vehicles, including a man riding a bicycle. The silver car is positioned
belongings or personal items with him while cycling. behind the man on the bicycle, and it appears to be in motion, following the flow of traffic.

Prompt 1: Tell me about the car in the image. Prompt 2: Tell me about the deer crossing the road.
SparseVILA: "The car in the image is a blue sports car, possibly a Mazda SparseVILA: "In the image, a deer is crossing a road in front of a car. The deer is
RX-8, driving down the road. walking across the street, and the car is waiting patiently behind it ... this moment

highlights the importance of being cautious and aware of wildlife while driving...”

Figure AS. Visualization of selected tokens from the KV cache for various queries in the multi-round setting. The heatmap illustrates the
frequency of token selection from the KV Cache for the particular query of interest. We conduct said visualization on LLaVA-1.5 [27]

	Introduction
	Preliminaries and Related Work
	Query-Agnostic Sparsity
	Query-Aware Sparsity

	SparseVILA: Best of Both Worlds
	Prefill Phase: Query-Agnostic Pruning
	Decode Phase: Query-Aware Retrieval
	Decoupled Prefill-Decode Visual Sparsity
	Efficient Implementation

	Experiments
	Setup
	Results on Image Benchmarks
	Results on Video Benchmarks
	Efficiency Analysis
	Qualitative Analysis

	Conclusion
	Table of Contents
	Additional Related Works
	Query-Aware Oracle
	SparseVILA: Additional details
	Context Stage Pruning
	Generation Stage Retrieval
	Additional details on KV cache compression techniques
	Discussion on SoTA Overheads
	Discussions on Sink & Retrieval Tokens

	Experimental Details
	Benchmark Details
	Baselines
	Multi-Turn Evaluation Benchmarks

	Quantitative Results
	Image Benchmarks
	Query Agnostic Comparisons
	Frontier Models

	Video Benchmarks

	Multi-Turn V-NIAH
	Qualitative Visuals
	Visualizing Token Maps

