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Supplementary Material

8. Overview
This supplementary material is organized as follows:
• Retrieval result visualizations on the CARGO [42] and

AG-ReIDv1 [28] datasets across different protocols.
• Performance evaluation of the proposed VIF method on

the AG-ReIDv2 [29] dataset under cross-view protocols.
• Cross-domain evaluation for transfer learning from the

CARGO dataset to AG-ReIDv1.
• Effectiveness analysis of the Multi-Patch-Level Probabil-

ity (MPLP) mechanism.
• Hyper-parameter analysis of the PLRM augmentation,

including θmax, P0, α, and the loss balancing hyper-
parameters γ and δ.

Note: All references cited in this supplementary material
correspond to the original reference list of the main paper.

9. Visualization of Retrieval Results
Figure 5 presents a visualization of retrieval results on the
CARGO dataset (under four protocols) and the AG-ReIDv1
dataset (under two protocols). Our method consistently
outperforms the baseline across all protocols, demonstrat-
ing its effectiveness in addressing extreme viewpoint vari-
ations. The baseline struggles with cross-view discrepan-
cies, failing to retrieve the correct target image in Rank1
results across both datasets. In contrast, our approach cap-
tures view-invariant features, leading to more accurate iden-
tity retrieval. The visualizations further highlight the ca-
pability of the proposed VIF method to effectively handle
diverse viewpoint variations, making it highly suitable for
AG-ReID.

10. Performance Evaluation on AG-ReIDv2
Dataset

AG-ReIDv2 [29] dataset contains 100,502 images of 1,615
identities, captured from three types of cameras: CCTV (ap-
proximately 3 meters altitude), wearable device (approxi-
mately 1.5 meters), and UAV (15 to 45 meters altitude).
Comparison. We further evaluate our method on the larger-
scale AG-ReIDv2 [29] dataset across two evaluation pro-
tocols (“A→G”, “G→A”). As shown in Table 6, the pro-
posed VIF method outperforms both the baseline and the
V2E [29] approach without relying on any auxiliary infor-
mation, demonstrating strong generalization capability.
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Figure 5. Comparison of retrieval visualizations on the CARGO
and AG-ReIDv1 datasets across multiple protocols. “P” denotes
the protocol. Green and red boxes indicate correct and incorrect
matches, respectively. The top five retrieval results are displayed.

Table 6. Comparison on the AG-ReIDv2 dataset under two eval-
uation protocols (“A→G”, “G→A”). Rank1, mAP, and mINP are
reported in (%) with the best results highlighted in bold.

Methods Protocol 1: A→G Protocol 2: G→A
Rank1 mAP mINP Rank1 mAP mINP

Baseline 85.40 77.03 55.84 84.65 75.90 47.21
V2E [29] 88.77 80.72 - 87.86 78.51 -

VIF (Ours) 89.29 81.58 58.71 88.20 79.11 49.92

Table 7. Cross-domain evaluation (%) for transfer learning from
the CARGO dataset to AG-ReIDv1.

Methods
CARGO→AG-ReIDv1

Protocol 1: A→G Protocol 2: G→A
Rank1 mAP mINP Rank1 mAP mINP

ViT [7] 1.59 1.95 0.8 3.01 2.31 0.95
VDT [42] 19.33 11.81 1.63 15.38 11.73 3.38

VIF (Ours) 23.90 14.92 3.34 19.54 14.43 4.85

11. Cross-Domain Evaluation

As shown in Table 7, the cross-domain evaluation (training
on the synthetic CARGO [42] dataset and testing on the real
AG-ReIDv1 [28] dataset) is highly challenging. Neverthe-
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Figure 6. Analysis of PLRM hyper-parameters under “ALL” protocol on the CARGO dataset. (a) θmax is a maximum rotation angle. (b)
P0 is a base probability for each patch. (c) α is a blending factor.

Table 8. Performance of PLRM with and without the Multi-Patch-
Level Probability (MPLP) mechanism on the CARGO dataset un-
der “ALL” and “A↔G” protocols. The best results are highlighted
in bold.

Methods Protocol 1: ALL Protocol 4: A↔G
Rank1 mAP mINP Rank1 mAP mINP

Baseline 61.54 53.54 39.62 43.13 40.11 28.20
+PLRM w/o MPLP 62.18 53.73 39.88 45.63 41.15 28.92
+PLRM with MPLP 63.14 54.74 40.90 48.12 42.95 30.09

less, our VIF method outperforms both the baseline (ViT
[7]) and VDT [42] (SOTA), further demonstrating its stabil-
ity and effectiveness in learning view-invariant features.

12. The Effectiveness of the Multi-Patch-Level
Probability (MPLP) Mechanism

To assess the impact of the Multi-Patch-Level Probability
(MPLP) mechanism in the PLRM augmentation strategy,
we conduct experiments on the CARGO dataset, as outlined
in Table 8. The results demonstrate the MPLP mechanism’s
ability to probabilistically prioritize rotational diversity in
central patches, which are typically more closely related to
identity, thereby enhancing the model’s robustness against
viewpoint variations.

13. Hyper-parameter Analysis
13.1. Effect of PLRM Hyper-parameters
To better understand the impact of key hyper-parameters on
the robustness of the PLRM augmentation, we analyze the
effects of θmax (Eq. 4), P0 (Eq. 3), and α (Eq. 5) under the
“ALL” protocol on the CARGO dataset, as shown in Fig-
ure 6. First, θmax controls the maximum rotational range.
Varying θmax from 15◦ to 90◦, we find the model achieves
optimal performance at θmax = 45◦, indicating that moder-
ate tilt rotations are beneficial for the AG-ReID task. Next,
we investigate the effect of P0 the base probability for patch
transformation, by testing values from 0.1 to 0.5. The best
results are achieved at P0 = 0.3, suggesting that a balanced
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Figure 7. Analysis of balancing hyper-parameters γ and δ under
“ALL” protocol on the CARGO dataset.

base probability promotes effective augmentation. Finally,
the blending factor α governs the contribution of the orig-
inal and rotated patches. After testing values ranging from
0.1 to 0.9, we find that α = 0.5 yields the best performance,
striking an ideal balance between preserving structural in-
tegrity and introducing rotational diversity.

13.2. Effect of Balancing Hyper-parameters
We evaluate the impact of the balancing hyper-parameters
γ and δ (Eq. 13) on the CARGO dataset under the “ALL”
protocol, as shown in Figure 7. The results indicate that the
triplet and VIAL objectives contribute complementarily to
enhancing discriminative and view-invariant feature learn-
ing.
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