StochasticSplats:
Stochastic Rasterization for Sorting-Free 3D Gaussian Splatting

Supplementary Material

1. Per-scene results

Table 3 and Table 4 show the times for different scenes and
different rendering techniques.

2. Ablations

To better understand the design choices of our method, we
conduct ablation studies examining the role of unbiased gra-
dients and the capability of training from scratch.

2.1. Unbiased Gradients

In the main paper, we discussed the importance of ensuring
unbiased gradients. Here, we show that without decorrela-
tion, the gradients become biased, leading to degraded per-
formance, particularly at lower SPP. Table 1 presents fine-
tuned scenes after 1k iterations under different SPP settings.
We observe that using the same samples for both the for-
ward and backward passes causes a significant drop in qual-
ity, whereas employing two independent random samples
substantially improves the results.

SPP 4 16 64 128 256
Correlated 18.04 2120 25.66 27.25 28.09
Decorrelated ~ 27.05 28.11 28.39 28.44 28.47

Table 1. Unbiased gradients — PSNR comparison between fine-
tuning with correlated and decorrelated samples across different
SPP settings.

2.2. Training From Scratch

While our main results are based on fine-tuning, even with-
out fine-tuning, our method can still render 3DGS-trained
scenes artifact-free using their original depth computation.
Still, note that applying our improved pop-free depth com-
putation, fine-tuning helps prevent visual artifacts that arise
from mismatches between training and rendering. Regard-
less, for completeness, we report our performances when
training from scratch — it also achieves competitive quality;
see Table 2 for the Bicycle scene from MipNeRF360.

SPP 128 256 1024 AB
PSNR*t 25.11 25.21 25.37 25.62

Table 2. Training from scratch — results for the Bicycle scene
from the MipNeRF360 dataset using our stochastic approach.

3. Tighter image-space bounding box

As our method requires rasterizing all Gaussians without
an early termination transmittance threshold, any reduc-

tion in the number of Gaussians within each tile helps in
our CUDA implementation. ~ 3DGS projects a 3D Gaus-
sian onto the image plane, resulting in a 2D Gaussian from
which an axis-aligned bounding box around its center is
computed in screen space. 3DGS uses a fix =3 to cut-
off the Gaussian contribution. We follow Radl et al. [2]
approach and use tpo = +/2log(a/ep) with €, = 1/255 in
all our results, including 3DGS.

Given a 2D screen-space Gaussian, 3DGS computes
the major and minor eigenvectors and their corresponding
eigenvalues, A\; and \y. The larger eigenvalue provides a
bound on the Gaussian’s radius in screen space, scaled by
to. The radius is then used to form an axis-aligned square
bounding box around the center of the projected Gaussian.

However, for elongated Gaussians, this square approxi-
mation introduces unnecessary overhead in a tile-based im-
plementation, increasing the number of per-tile-Gaussians.
Instead, a tighter bounding box can be derived by account-
ing for both eigenvalues and their associated eigenvectors.
Specifically, in each eigenvector direction v;, we set

A; = Vto M,

In our OpenGL implementation, we also compute the
bounding-box corners as described above, which yields a
tighter fit, without requiring them to be axis-aligned. More-
over, by increasing the number of corner samples, we can
further refine this bounding region with minimal additional
effort.

i=1,2, 6]

4. Temporal anti-aliasing

At the first frame, we record each pixel’s world-space po-
sition x and color. For each subsequent frame, these 3D
points are projected into the new view to produce a warped
version of the previous average frame’s image. We then
compare the warped 3D coordinates with those computed
for the current frame. If they closely match, we blend both
the color and the = values. Otherwise, the sample count for
that pixel is reset. Let ¢; denote the color image at time ¢,
and p;—1 be the accumulated warped average from previous
frames. We update the color in the current frame by:

_ N
Ne_1+1

1
C - - 2
Ct pe—1 + N, 1o (2)
where N;_; represents the number of accumulated samples
up to frame ¢ — 1. The same operation applies to the 3D
coordinates. ~ We note this average position is well de-

fined for surfaces, but poorly approximated in less confident

ST@l ST@2 ST@4 ST@8 ST@l6 AB-GL AB-CUDA

Room 1.91 3.14 5.70 16.24 20.49 13.73 592
Bonsai 1.55 2.47 443 12.58 15.64 10.13 4.50
Counter 2.08 3.62 6.70 19.39 24.10 12.24 5.75
Kitchen 2.83 451 7.96 22.33 27.28 17.86 7.41
Stump 4.12 442 5.09 8.98 10.72 35.80 8.90
Bicycle 5.13 5.48 6.27 11.89 14.00 64.14 12.44
Garden 5.13 5.62 6.83 13.77 16.11 73.19 12.07
Average 3.25 4.18 6.42 15.31 18.48 32.16 8.14

Table 3. Average rendering time on RTX 3090.

ST@l ST@2 ST@4 ST@8 ST@l6 AB-GL AB-CUDA

Room 0.99 1.40 2.33 6.98 8.35 8.87 3.76
Bonsai 0.83 1.16 1.89 5.40 6.39 6.42 2.89
Counter 1.03 1.59 2.75 8.33 9.84 8.20 3.83
Kitchen 1.42 2.05 3.41 9.60 11.20 11.36 4.89
Stump 2.15 2.29 2.64 4.26 5.09 24.15 6.32
Bicycle 2.71 2.88 3.35 5.63 6.50 41.17 9.08
Garden 2.79 3.01 3.66 6.78 7.62 44.74 8.46
Average 1.85 2.05 2.86 6.71 8.00 20.70 5.60

Table 4. Average rendering time on RTX 4090.

“volumetric” regions. We define new samples that are fur-
ther from the warped mesh by more than a threshold 7 to be
occluded, and reset accumulation for those pixels.

5. Free-flight distance sampling

For completeness, we describe the free-flight distance sam-
pling we use for volumetric intermixing in detail. Follow-
ing [1], we define a volumetric density for a 3D Gaussian:

o) = arexp (5= W = k-) O

where oy scales the density of the entire Gaussian uniformly
and x is a 3D position. The integral of this density along a
ray (o, d) can be analytically computed:

/ o(xy)dt zatig exp ((a® — b)/2)
0 c

. (erf ((a + tc)/\@) —erf (a/\@))
“)

where t is the distance along the ray and we define:

o—)Tx-1
=0T o TS 0)

=vdTr¥-1d.

In turn, this enables the analytical computation of the free-
flight PDF p(t) = o(x;) exp(— fo (xs) ds) and its CDF,

which is simply 1 — exp(— fo (xs)ds). This allows to

derive an analytical inverse CDF sampling routine [1]:

= erf (\fa) - \/;cat exp ((b— a®)/2) log(1 — u)

. L(—a+erf M(d)/d) ifde(-1,1)
R otherwise,

where u ~ U(0,1). The distance ¢t computed using this
routine is distributed proportional to p(t).

References

[1] Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic,
Simon Green, Piotr Didyk, and Adrian Jarabo. Don’t splat
your gaussians: Volumetric ray-traced primitives for model-
ing and rendering scattering and emissive media. ACM Trans.
Graph., 44(1), 2025. 2

[2] Lukas Radl, Michael Steiner, Mathias Parger, Alexan-
der Weinrauch, Bernhard Kerbl, and Markus Steinberger.
Stopthepop: Sorted gaussian splatting for view-consistent
real-time rendering. ACM Trans. Graph. (Proc. SIGGRAPH),
43(4):1-17,2024. 1

