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The supplementary material contains additional details
and further results related to the main paper.

1. Visualization of diffusion-based technique
on a certain dataset

To qualitatively assess the impact of the proposed diffu-
sion process on feature representations, t-SNE visualiza-
tions are provided on the DTD dataset, comparing original
features (left) and diffused features (right). Figure 1 illus-
trates the effect on two PEFT methods: Convpass Attention
and LoRA.

For Convpass Attention, the diffusion process enhances
inter-class separation and intra-class compactness, resulting
in more distinct clusters, as reflected by an increase in Sil-
houette Score from 0.0189 to 0.0195. This indicates that
diffusion refines the feature space to form more discrimi-
native representations, which aligns with Convpass Atten-
tion’s superior classification performance. In contrast, for
LoRA, diffusion slightly disrupts the feature structure, re-
ducing the Silhouette Score from 0.0188 to 0.0148. These
observations suggest that the impact of diffusion depends
on the initial geometry of the PEFT embeddings, benefit-
ing methods with well-aligned feature spaces while offering
limited gains for others.

Figure 1. t-SNE visualization of original and diffused feature em-
beddings on the DTD dataset for Convpass Attention and LoRA.

2. More experimental results

This section presents experimental results that were not in-
cluded in the main paper due to space limitations.

2.1. Comparison with Clustering Methods
The proposed method is further compared against Deep-
Cluster and three traditional clustering-based approaches:
DBSCAN, K-Means, and Agglomerative Clustering. As
shown in Table 1, the proposed method consistently outper-
forms these baselines. For DeepCluster, its original eval-
uation protocol is followed to assess the quality of feature
clustering, while for DBSCAN, K-Means, and Agglomera-
tive Clustering, performance is evaluated based on cluster-
ing accuracy computed via assignment correctness.

Table 1. Comparison of clustering methods on VTAB-1k bench-
mark.

Metric DeepCl. DBSCAN Kmeans Agglomerative Ours

Avg. (19) 0.050 -0.043 0.420 0.382 0.517

2.2. Effect of Dimensionality
The number of top c eigenvectors determines how much
structural information is retained in the transformed diffu-
sion space, directly impacting the accuracy of diffusion dis-
tance computation (Eq. 4). Selecting too few eigenvectors
discards important manifold structure, whereas too many
can introduce noise, reducing correlation performance. To
isolate the effect of c, we fix the optimal values of k and
t and vary c. We evaluate correlation performance for
c ∈ {8, 16, 32, 64}, as shown in Figure 2. As c increases,
correlation improves, peaking at c = 32 (τw = 0.517). Be-
yond this point, adding more components does not enhance
performance, indicating that an optimal balance must be
maintained between preserving structural information and
mitigating noise.

3. Normalization Formula

To ensure that the intra-class and inter-class diffusion scores
are on a comparable scale, we apply normalization. Since a
higher inter-class diffusion score Sinter

t is desirable, we use
standard min-max normalization:

Ŝinter
t =

Sinter
t −min(Sinter

t )

max(Sinter
t )−min(Sinter

t )
. (1)



Figure 2. Effect of the number of components c on correlation
performance. Correlation peaks at c = 32.

Conversely, for intra-class diffusion, a lower score is pre-
ferred, as it indicates tighter clustering within each class.
To ensure that lower values contribute positively to the final
ranking, we apply inverse normalization:

Ŝintra
t = 1− Sintra

t −min(Sintra
t )

max(Sintra
t )−min(Sintra

t )
. (2)

This transformation ensures that both intra-class and
inter-class diffusion scores align with our ranking objective.
After normalization, higher values indicate better model
performance, making the final PEFT selection score com-
parable across different models.

4. Relation between diffusion distance and eu-
clidean distance [5]

If we choose the diffusion coordinates as:

Ψt(x) = (λt
1ϕ1(x), λ

t
2ϕ2(x), . . . , λ

t
dϕd(x)),

then the diffusion distance between points in the origi-
nal space is equal to the Euclidean distance in the diffusion
space:

D2
t (xi, xj) = ∥Ψt(xi)−Ψt(xj)∥22.

Proof:
The diffusion distance between two points xi and xj at

time t is given by:

D2
t (xi, xj) =

∑
u∈X

|pt(xi, u)− pt(xj , u)|2 , (3)

where pt(x, u) is the probability of transitioning from x
to u in t steps.

Using the spectral decomposition of the transition matrix
P , the probability distribution can be written as:

pt(x, u) =
∑
l≥0

λt
lϕl(x)ϕl(u). (4)

Substituting this into the diffusion distance:

D2
t (xi, xj) =

∑
u∈X

∣∣∣∣∣∣
∑
l≥0

λt
lϕl(xi)ϕl(u)−

∑
l≥0

λt
lϕl(xj)ϕl(u)

∣∣∣∣∣∣
2

.

(5)
Rearranging the terms:

D2
t (xi, xj) =

∑
u∈X

∣∣∣∣∣∣
∑
l≥0

λt
lϕl(u) (ϕl(xi)− ϕl(xj))

∣∣∣∣∣∣
2

. (6)

Expanding the squared term:

D2
t (xi, xj) =

∑
u∈X

∑
l≥0

λt
lϕl(u) (ϕl(xi)− ϕl(xj))


×

∑
m≥0

λt
mϕm(u) (ϕm(xi)− ϕm(xj))

 . (7)

D2
t (xi, xj) =

∑
u∈X

∑
l≥0

∑
m≥0

λt
lϕl(u)(ϕl(xi)− ϕl(xj))

× λt
mϕm(u)(ϕm(xi)− ϕm(xj)). (8)

D2
t (xi, xj) =

∑
u∈X

∑
l≥0

∑
m≥0

λt
lϕl(u)ϕm(u)λt

m

× (ϕl(xi)− ϕl(xj))(ϕm(xi)− ϕm(xj)). (9)

Since ϕl is an orthonormal basis, we use the property:

∑
u∈X

ϕl(u)ϕm(u) = δlm =

{
1, l = m,

0, l ̸= m.
(10)

This eliminates cross terms where l ̸= m, simplifying
our expression:

D2
t (xi, xj) =

∑
l≥0

λ2t
l (ϕl(xi)−ϕl(xj))

2
∑
u∈X

ϕ2
l (u). (11)

As provided in reference, the diffusion coordinates form
an orthonormal basis. By the normalization property of
eigenfunctions: ∑

u∈X

ϕ2
l (u) = 1. (12)

Thus, we obtain:



D2
t (xi, xj) =

∑
l≥0

λ2t
l (ϕl(xi)− ϕl(xj))

2. (13)

Thus, we have proved that the diffusion distance in the
original space is equal to the Euclidean distance in the dif-
fusion space when the diffusion coordinates are chosen as:

Ψt(x) = (λt
1ϕ1(x), λ

t
2ϕ2(x), . . . , λ

t
dϕd(x)). (14)

This confirms that diffusion maps provide a transforma-
tion where the diffusion distance in the original space be-
comes equivalent to the Euclidean distance in the new dif-
fusion space, ensuring that the geometry of the data is well
preserved.

5. Algorithm and Time Complexity
Although the class count (C) introduces an O(C2) com-
plexity term, the overall runtime is predominantly influ-
enced by dataset size (N ). Specifically, operations such as
similarity matrix computation (O(N · k · logN)) and spec-
tral decomposition (O(N2)) dominate the runtime. There-
fore, we capped our experiments at 10,000 samples. Below,
we provide a pseudocode representation (Alg. 1) of our ap-
proach to better illustrate the step-by-step process involved
in selecting the most suitable PEFT technique.

6. Ground Truth
To establish an accurate ground-truth ranking of PEFT tech-
niques, we fine-tune each model on the target dataset, fol-
lowing prior methodologies [33,37]. Earlier approaches
[14,16,18] initialized PEFT techniques randomly; how-
ever, recent findings [34] suggest that initializing with Im-
ageNet weights significantly improves fine-tuning perfor-
mance. Ranking PEFT techniques using randomly initial-
ized models is infeasible, as the extracted target embeddings
would be highly noisy and lack meaningful structure. Since
embeddings are obtained by performing inference with dif-
ferent PEFT methods, a randomly initialized PEFT pro-
duces feature representations that contain no task-specific
information. Consequently, rankings based on these noisy
embeddings would be unreliable, as variations would arise
from random initialization rather than the actual fine-tuning
effectiveness of each method.

To ensure meaningful feature extraction and stable rank-
ings, we initialize all PEFT techniques with pre-trained Im-
ageNet weights. Specifically, each PEFT method is pre-
trained on a subset of ImageNet containing 30 samples
per class before fine-tuning on the target dataset. Fine-
tuning is performed using a grid search over key hyper-
parameters, as learning rate and weight decay significantly
influence downstream performance. We explore learning

Algorithm 1: Diffusion-based PEFT Selection
method

Input: Target dataset D = {Z, Y } with samples Z
and labels Y ; Set of L PEFT models
{fl}Ll=1; Diffusion step parameter t; Number
of nearest neighbors k.

Output: PEFT selection scores SPEFT for each
PEFT.

1 for each model fl in {fl}Ll=1 do
2 Extract feature representations: Xl = fl(Z);
3 Normalize features: Xl ← Xl/∥Xl∥2;

// Compute Pairwise Similarities
4 Initialize affinity matrix K ∈ RN×N

5 for each pair (xi, xj) in Xl do
6 Kij = exp(−∥xi − xj∥2/σ2)

// Gaussian RBF kernel

// Construct k-NN Graph
7 Apply k-NN filtering to retain only k-nearest

neighbors; Compute degree matrix D where
Dii =

∑
j Kij ; Compute transition matrix

P = D−1K, ensuring P is row-stochastic;
// Compute Multi-Step Transition

Probabilities
8 Compute P t = P · P · · ·P (for t steps);

// Compute Diffusion Distances
9 Initialize diffusion distance matrix Dt ∈ RN×N

10 for each pair (xi, xj) in Xl do
11 D2

t (xi, xj) =
∑N

u=1(Pt[i, u]− Pt[j, u])
2;

// Compute Intra-Class and
Inter-Class Scores

12 Compute intra-class diffusion score: Sintra
t

13 Compute inter-class diffusion score: Sinter
t

// Compute PEFT Selection Score
14 Compute

∆Sintra
t = Sintra

t (PPEFTi)− Sintra
t (Pbackbone)

15 Compute
∆Sinter

t = Sinter
t (PPEFTi

)− Sinter
t (Pbackbone);

// Compute final selection score
after normalization

16

SPEFTi
= ∆̂S

inter
t + ∆̂S

intra
t

17 return SPEFT;

rates of {10−2, 10−3, 10−4} and weight decay values of
{10−3, 10−4, 10−5}. The optimal hyperparameter config-
uration is selected based on validation performance. All
models are fine-tuned on 8 NVIDIA A100 GPUs with a
batch size of 128, and input images are resized to 224×224
pixels.



Table 2. VTAB-1k Ground Truth Ranking: Top-1 classification accuracy (%) of different PEFT techniques across VTAB-1k datasets. This
ranking is used to compute Kendall’s correlation coefficient with the predicted ranking.

Dataset ADAPTER LORA Convpass ConvpassAttn FactTT FactTK VPT BitFit NOAH
caltech101 88.78 88.82 90.91 91.77 91.30 91.39 92.24 86.88 91.01
cifar100 72.39 69.94 72.65 68.58 72.08 72.21 73.92 72.83 72.49
dtd 69.82 69.16 73.65 73.15 73.11 72.00 73.78 67.48 73.42
oxford flowers102 97.62 97.54 98.17 98.79 99.55 98.42 99.42 97.81 97.97
oxford iiit pet 91.11 90.34 90.94 91.18 91.34 91.45 91.97 89.12 90.80
svhn 91.01 90.67 90.42 92.83 89.47 89.91 91.25 92.50 89.32
sun397 53.20 53.13 52.94 53.43 53.28 53.20 54.12 51.27 52.06
patch camelyon 85.77 88.98 88.39 88.13 87.78 88.59 88.23 85.87 87.23
eurosat 96.93 97.91 97.22 98.29 97.21 97.43 97.13 97.82 97.05
resisc45 84.03 84.67 86.61 85.82 85.42 85.63 85.89 82.43 85.37
diabetic retinopathy 74.60 73.78 75.49 74.44 73.25 73.86 74.00 74.19 73.14
clevr count 82.48 82.17 83.17 82.09 82.96 82.20 82.91 80.37 82.83
clevr dist 63.90 64.31 66.19 65.48 65.61 65.94 66.08 63.73 63.22
dmlab 50.97 50.62 51.93 51.88 51.07 52.39 49.14 49.91 50.26
kitti 78.10 78.93 81.86 78.90 77.19 76.09 79.80 75.11 79.06
dsprites loc 82.68 82.01 86.72 84.29 86.35 86.19 82.41 81.46 86.69
dsprites ori 54.48 54.30 54.13 53.73 53.25 53.18 54.63 51.58 53.84
smallnorb azi 35.16 37.18 36.49 36.48 36.84 38.30 34.33 37.11 34.91
smallnorb ele 43.16 43.08 45.79 43.18 42.55 43.08 42.88 37.47 42.81

Table 3. FGVC Ground Truth Ranking: Top-1 classification accuracy (%) of different PEFT techniques across FGVC datasets. This
ranking is used to compute Kendall’s correlation coefficient with the predicted ranking.

Dataset ADAPTER LORA Convpass ConvpassAttn FactTT FactTK VPT BitFit NOAH
CUB 200 2011 88.81 89.65 88.99 88.76 87.37 87.12 89.57 88.51 89.59
NABirds 86.11 86.95 84.21 86.94 84.59 83.47 85.16 84.19 86.82
OxfordFlower 98.42 99.19 98.13 99.21 99.05 98.73 99.11 98.91 99.06
StanfordCars 86.21 84.39 85.61 85.19 85.48 85.92 84.77 84.04 85.14
StanfordDogs 91.92 91.04 92.82 93.12 91.01 92.49 93.48 92.81 93.22

Table 2 and Table 3 present the Top-1 classification ac-
curacy of 9 PEFT methods across 19 VTAB-1k datasets and
5 FGVC datasets, respectively. These accuracy scores serve
as ground-truth rankings for evaluating the correlation with
our predicted rankings using Kendall’s τw coefficient.


