Removing Cost Volumes from Optical Flow Estimators

Supplementary Material

A.1. Complexity

In the main paper, we only refer to FLOPS as a measure
of complexity. However, a reduction of FLOPS does not
necessarily lead to a reduction in compute time on currently
available accelerators, mostly due to memory alignment is-
sues. Since we only remove entire parts of the networks and
do not introduce sparsity or similar, we find that the reduc-
tion in FLOPS is proportional to the reduction in runtime.
For completeness, we show the runtimes for different reso-
lutions in Fig. A.1.

Another limiting factor is often the amount of memory
required for a single prediction. We evaluate the memory
footprint of our method in Fig. A.2, and due to the missing
cost volumes, we find a significant reduction in memory
footprint. However, technically RAFT-style architectures
never require every value of the cost volume to be avail-
able at the same time since the refinement network can only
sample a certain number of values from the cost volume per
iteration. Therefore, the required values could be calculated
only when they are requested from the refinement module.
This was also noticed and implemented by Teed and Deng
in the original implementation of RAFT, but the disadvan-
tage of this approach is a significant slowdown in process-
ing speed, and therefore, we do not consider this approach
in our work.

A.2. Downsample-upsample strategies

Downsampling the inputs and bilinearly upsampling the re-
sulting optical flow is another method to reduce the memory
footprint and inference time, and is, e.g., applied by SEA-
RAFT on Full-HD frames to increase the computational ef-
ficiency for higher resolution inputs [52]. In our work, we
did not apply this orthogonal strategy as it can be applied
theoretically to all optical flow methods. Table A.l shows
that when evaluating on the Spring dataset, most meth-
ods achieve even higher accuracies using the downsample-
upsample strategy, but the results on Sintel and Monkaa
clearly show that the increase in accuracy is not persistent
between datasets.

A.3. Additional technical details

Refinement network. The refinement network is imple-
mented such that the sampling from the cost volume during
the refinement can return an all-zero tensor instead of actu-
ally sampling from the cost volume. This simplifies the im-
plementation of cutting away the feature network because
by returning only zeros, the weights of the first layer of the
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Figure A.1. Runtime of our methods and SEA-RAFT for different

input resolutions.
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Figure A.2. Memory requirements of our methods and SEA-
RAFT for different input resolutions.

refinement network that deal with this part of the input are
not used since all of them are multiplied by zero. Theoret-
ically, removing the affected weights from this layer com-
pletely would be possible. Still, this way of implementing
the process is much easier, and the number of calculations
needed to process the zero tensor is negligible compared to
all other computations necessary for the optical flow predic-
tion.

Training protocol. As described in Sec. 3.2, we mostly
follow the training protocol proposed by SEA-RAFT [52].
The only difference is the composition of the TSKH dataset,
where we do not include the validation split of Sintel. This
allows us to fairly evaluate our methods on parts of the Sin-
tel dataset for our analysis.

A.4. Qualitative examples

More qualitative examples, including samples from Sin-
tel [5], Spring [33], and natural images taken from
KITTT [35, 36] and DAVIS [40] can be found in Figs. A.3
and A 4.
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Table A.1. Effect of downsampling by a factor of 2x and bilinearly upsampling the resulting optical flow on different datasets. The time
and memory refer to input frames of size 1920 x 1080. For completeness, we also show the accuracies achievable by methods that were
also trained on the Sintel validation set, and we put these numbers in parentheses.
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Figure A.3. More qualitative examples on various frames taken from DAVIS [40], KITTI [35, 36], Sintel [5], and Spring [33].
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Figure A.4. More qualitative examples on various frames taken from DAVIS [40], KITTI [35, 36], Sintel [5], and Spring [33].



