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Figure A. Visualization of Transformer-based Integration archi-
tecture. The transformer-based integration takes the global frequency
feature z0, the part-based frequency features zp, p∈ {1,2,3,4,5},
and the blended feature Z+. The transformer-based integration obtains
the spatial embedding ES using spatial transformer encoder and the
temporal embedding ET using temporal transformer encoder and uses
these embeddings to make the final prediction ŷ. For STE and TTE,
the frequency features are subjected to average pooling, producing
Pool(zx)∈RB×C , with x∈{0,...,5}.

A. Detail of Transformer-based Integration

In this section, we will describe in detail the structure of the
transformer-based integration in the joint transformer module
introduced in the previous section. Our transformer-based
integration is mainly composed of a Spatial Transformer
Encoder (STE) and a Temporal Transformer Encoder (TTE),
and we visualize its architecture in Fig. A.

A.1. Spatial Transformer Encoder

We design the spatial transformer encoder to improve the
interaction between the spatial feature from the feature blender
and the part-based frequency features. STE outputs the spatial
embedding ES ∈R1024 by feeding the spatial features of the
blended feature Z0∈RDC×DT×DH×DW and each part-based
frequency feature Zp as a token to the Standard Transformer.

We first estimate the spatial featuresZsp∈RDC×1×DH×DW

from blended feature Z+ by averaging on the temporal axes,
and STE generates the spatial embedding ES by getting Zsp as
a token. We apply linear projection W sp to map the sequence
of features zsps ∈RDC ,s∈{1,2,...,DH×DW} of Zsp and add

a 2D positional encoding possp.

tokenssp+ =[zspclass,W
spzsp1 ,...,W spzspDH×DW

]T+possp,
(1s)

where possp is 2D sincos positional encoding, Zsp
class is extra

class embedding, and ‘sp’ is short for spatial. Using the
coordinate values (ap,bp) employed to crop each part-based
frequency feature, the pth part position encoding value pospartp

is obtained by interpolating neighboring positional encoding
values in possp and then adding it to a frequency position value
posfreq. This frequency position value posfreq serves as a
specific indicator of frequency domain features.

pospartp =interpolation((ap,bp),possp)+posfreq,p∈{1,...,5}.
(2s)

We apply linear projection Wfreq to map the sequence of
part-based frequency features Zp and add with part position
pospartp .

tokensspfreq=[WfreqZ1+pospart1 ,...,W freqZ5+pospart5 ]T .
(3s)

We concatenate the tokens tokenssp+ and tokensp
freq, which

are fed into a transformer to get the spatial transformer
embedding ES.

ES=STE(tokenssp+ ,tokensspfreq). (4s)

A.2. Temporal Transformer Encoder
Similar to STE, the Temporal Transformer Encoder (TTE)
takes the temporal features Ztp∈RDT×DC×1×1 of the blended
feature Z+ and the global frequency features Z0 and outputs
the temporal embedding ET ∈R1024. To make token tokenstp,
we apply linear projection W tp to Ztp

t ∈RDC ,t∈{1,2,...,DT}
and add with 1D positional encoding postp. Ztp

class is extra
class embedding and ‘tp’ is short for temporal.

tokenstp=[Ztp
class,W

tpZtp
1 ,...,W tpZtp

DT
]T+postp.

We put tokenstp into a transformer to get the temporal
transformer embedding ET after adding with mapped global
frequency feature by linear projection W tp

freq.

ET =TTE(tokenstp+W tp
freqZ

0). (5s)

To get the final prediction ŷ, we concatenate W bES and ET ,
which are put into the final classifier ϕfinal.

ŷ=ϕfinal(W bES,ET ), (6s)

where W b∈R1024 is a linear projection that aligns distributions.



Figure B. Visualization of Updating the Attention Proposal Module.
We visualize the process of updating APM.

B. Detail of Updating Attention Proposal Module.
This section details the operation of the Attention Proposal
Module (APM) within the Frequency Feature Extractor
(introduced in Section 4.1). The APM automatically identifies
and focuses on artifact-rich regions within the input, enabling
adaptive localization of deepfake manipulations. Unlike
methods relying on predefined regions (e.g., facial landmarks),
the APM leverages classification gradients to pinpoint areas
most relevant for deepfake detection.

To update the parameters of the APM, the following steps
are performed. First, the input frequency spectra are masked
by applying Mp(ap,bp) according to Eq. 4, ensuring proper
gradient computation during backpropagation. The regions
corresponding to elements with a value of 1 in Mp are then
cropped for part-based frequency extraction. Importantly, this
cropping operation does not interfere with gradient propagation,
as masked-out regions (with zero values) naturally propagate
zero gradients. Next, gradients derived from the binary clas-
sification loss are backpropagated through the cropped regions,
guided by the APM’s outputs ap and bp in Eq. 3. Taking the
x-axis as an example, the gradients are divided into left L and
right R segments (R,L∈RH×W

2 ). The squared magnitudes
of the gradient values (||L||2 and ||R||2) corresponding to each
segment are calculated and their difference ||L||2 − ||R||2 is
computed and transmitted as the gradient value for ap. Thus,
if the gradient magnitude is larger on the left segment, the
APM is encouraged to propose a smaller x value (to the left).
Similarly, bp is updated along the corresponding axis. Through
this training procedure, the APM learns to effectively focus on
regions exhibiting prominent gradient responses (artifact-rich
areas), thereby enhancing its ability to localize and analyze
deepfake anomalies. We describe this process in Fig. B.

C. Analysis of Temporal Frequency Extraction
We experimented to check how to extract the temporal fre-
quency for deepfake video detection. Table A and Fig. C are the
results of a cross-synthesis experiment using the ResNet-50 [10]
classifier trained by global temporal frequency only.

For the experiment using one synthesis method, we
evaluated our method by training a model with the training

Filter Train on remaining three
DF FS F2F NT Avg

None 73.01 53.26 64.40 58.33 62.25
Median 98.05 80.98 95.29 95.02 92.34
Mean 96.85 78.13 90.88 93.39 89.81

(a) Filtering Method.

Feature Train on remaining three
DF FS F2F NT Avg

Magnitude 98.05 80.98 95.29 95.02 92.34
Phase 54.36 50.82 55.25 60.93 55.34
All 95.45 73.22 92.81 95.96 89.36

(b) Comparison of Frequency Features.

Table A. Experiment about temporal frequency extraction methods.
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Figure C. Comparison of frame intervals for temporal-frequency
extraction. The horizontal axis is the frame interval used to extract the
temporal frequency and the vertical axis is the video-level AUC(%)
performance of the cross-synthesis experiments for each method.

data generated by the other three methods. We experiment
with four different synthesis methods (DF, FS, F2F, NT) in
FaceForensics++ (FF++) [18].

In our default setting, as a pre-processing, we apply the
median filter to extract the frequency for 32 frames, using
the magnitude of the filtered frequency to detect the deepfake
video. Before performing 1D Fourier transform, we obtain a
pre-processed frame Î by removing the dominant components
through a median filter as

Î=gray(I−filter(I)), (7s)

where filter(I) is an image filtered by a median filter and
gray(I) means the gray-scaling function from the colored
image I.

We compare the performance of the process with and without
a filter and the performance of different types of filters and show
the results in Table Aa. The first row (None) is the result with-
out filter, which means the result when the original image I is
gray-scaled and Fourier transformed and fed into ResNet-50, the
second row (Median) is the result when median filter is applied
as filter, and the last row (Mean) is the result when Mean filter is
applied in Eq. 7s. Even though the mean filter was also effective



Method FF++ CDF FSh
AltFreezing 99.7→62.2 (−37.6 %) 89.0→56.8 (−36.2 %) 99.0→63.2 (−36.2 %)
Ours 99.6→56.0 (−43.8 %) 89.7→57.8 (−35.6 %) 99.4→53.1 (−46.6 %)

Table B. Performance degrade on shuffled frames.

Arch. APM FSh DFDC DFo Avg.
MLP 85.0 64.0 88.6 79.2
MLP 97.4 69.6 97.6 88.2 (11.4% ↑)

Table C. Isolated Effectiveness of the APM. We trained the model on
FF++ and evaluated it for FSh, DFDC and DFo.

for our method, the median filter showed the best performance.
Table Ab is the result when using phase and magnitude

of temporal frequency. Table Ab presents the performance
for different frequency features—Magnitude, Phase, and
a combination of both (All). We observe that employing
magnitude outperforms employing phase alone.

Fig. C is a performance table for each frame interval over
which frequencies are extracted. For example, an interval of 4
means that the temporal frequency was extracted every 4 frames
for a total of 32 frames. We find that performance increased with
higher frame intervals but saturated at 8 for all, except for FS.

Through these experiments, we use the Fourier transform
to extract the temporal frequency magnitude from 32 frames
preprocessed by a median filter.

D. Additional Analysis

D.1. Clarification of the Use of Temporal Informa-
tion

To demonstrate that our pixel-wise temporal-frequency-based
approach focuses on temporal information rather than encoding
static appearance, we randomly permuted the order of the
32-frame input sequence and evaluated its resulting perfor-
mance. As shown in Tab. B, our method shows a significant
performance drop (i.e., -43.8%), compared to AltFreezing,
demonstrating the strong dependency on the temporal infor-
mation. These results confirm that, rather than encoding static
appearance cues, our approach focuses on temporal dynamics.

D.2. Effectiveness of APM.
To evaluate the effectiveness of the APM in isolation, indepen-
dent of modules like STE and TTE, we conducted experiments
as shown in Table C. These experiments clearly demonstrate
that incorporating the APM significantly improves performance.
Specifically, the model without APM resulted in a lower
performance, adding the APM alone led to a performance
increase of up to 11.4%.

In Fig. D, we further analyzed APM activations by
visualizing normalized heatmaps of APM regions for DF, FS,
F2F, and NT. Regions are meaningfully different according
to datasets, denoting no overfitting. Specifically, APM tends

The number of parts CDF DFDC FSh DFo DFD Avg.
0 88.2 74.7 99.4 98.9 96.8 91.6
1 89.3 74.7 99.3 99.4 96.9 91.9
3 88.4 75.3 99.3 99.4 97.3 91.9
5 (ours) 89.7 75.2 99.3 99.4 97.3 92.2
7 87.1 74.5 99.3 99.4 97.0 91.5

Table D. Performance comparison by each number of parts pro-
posed by APM. We trained the model on FF++ and evaluated it for
five unseen datasets.

DF FS F2F NT

Figure D. APM Over-Selection Heatmaps (red: regions selected
more frequently than average) for each deepfake type.
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Figure E. Pixel-wise Temporal Frequency Distributions in FF++:
(A) shows inside APM-selected patches versus the remaining area, (B)
presents under different compression.

to focus on facial parts that were previously helpful to reveal
deepfakes: the mouth for F2F, eyes and nose for FS.

In Fig. E-A, APM-selected patches show higher average
temporal frequency magnitudes than surrounding areas,
indicating stronger flickering effects.

D.3. Ablation Study for the number of parts
Table D shows the performance of a model trained with varying
numbers of parts extracted by APM across different datasets.
We observe performance improvements after incorporating
part-based frequency features from APM, particularly with a
notable increase in performance on the DFo dataset, generally
increasing with up to 5 parts and peaking at 5. However,
performance declined with too many parts due to redundancy
from observing similar regions repeatedly, with noticeable
drops in performance on the DFDC and CDF datasets.

D.4. Ablation Study for the Feature Blending.
To analyze methods for integrating raw RGB features with
temporal frequency features, we conducted experiments
comparing different integration strategies in Table E. Our
findings show that using 1 × 1 Conv. for feature blending
improves performance while omitting it reduces adaptation



Feature blending FSh CDF DFDC DFo Avg.
no blending 99.3 85.1 75.4 99.3 89.8
add 77.3 68.2 59.9 75.7 70.3
concatenate 99.0 85.4 74.4 99.4 89.6
1×1 Conv. (Ours) 99.3 89.7 75.2 99.4 90.9
1×1 Conv. (×2) 99.4 87.1 75.6 99.5 90.4

Table E. Analysis for feature blending methodologies. We trained
the model on FF++.

50

60

70

80

90

100

RA W 9 5 8 0 6 0 3 0

50

60

70

80

90

100

RA W 9 5 8 0 6 0 3 0

WebP  (OpenCV) JPEG (OpenCV)AUC(%)

FTCN

Ours

Compression Image Quality Compression Image Quality

AUC(%)

Figure F. Evaluation of the robustness against WebP/JPEG.

between RGB and temporal frequency domains, leading to
a drop (e.g. no blending, add, concatenate). Additionally,
increasing convolution depth offers no significant gain.

D.5. Additional Results for Perturbations Robust-
ness.

We conducted a study on the robustness of our model against
various perturbations as proposed in DFo [11]. As shown
in Table F, our model shows impressive robustness against
perturbations like resize and blur. This robustness indicates that
our model is robust for frame-wise perturbation. Meanwhile,
our method suffers from performance drops for perturbations
that distort temporal information, such as compression and
noise. These performance drops are due to temporal distortion
interfering with the extraction of temporal frequency.

To evaluate our approach on more general compression,
we conducted additional compression robustness experiments
on WebP and JPEG compression. As shown in Fig. F, under
severe degradation using WebP and JPEG compression, our
method demonstrates superior robustness.

E. Discussion.
Fig. G denotes a failure case in which spec-
ular reflections on eyeglass lenses lead the
model to misclassify genuine frames as forgeries.

Figure G. Failure Case.

Moreover, as shown in Fig. 4 of
the main paper and Fig. F, the
temporal frequency generally
remains robust under various
video manipulations, such as
resizing and saturation adjustments. However, heavy video
and image compression can merge multiple neighboring pixels
into a single subpixel, diminishing pixel-level motions and
amplifying domain shifts in the temporal frequency.

Fig. E-B compares the average pixel-wise temporal fre-
quency under diverse image and video compression methods
(H264, JPEG, and WebP). At low frequency, compressed im-
ages/videos follow an uncompressed signal (i.e., RAW) closely;
while at high frequency, compressed images/videos increasingly
diminish the spectrum. This attributes the performance drop to
ours under severe compression. The performance drop under se-
vere compression remains a limitation, and our future work may
deal with this by exploring temporal-frequency regularization.

F. More Detail Setting
In this section, we will present the detailed setup of our experi-
ments.

F.1. Datasets
We use the following forgery video datasets: (1) FaceForen-
sics++ (FF++) [18] consists of four face forgery methods (Deep-
fakes (DF), FaceSwap (FS), Face2Face (F2F), and NeuralTex-
utres (NT)), with a total of 5000 videos (1000 real videos
and 1000 fake videos for each method). (2) Celeb-DF-v2
(CDF) [15] is a dataset consisting of 590 real videos and 5,639
fake videos that are synthesized by advanced techniques com-
pared to FF++. (3) DFDC-V2 (DFDC) [5], which has a 3,215
test video set, is more challenging than other datasets and was
made under extreme conditions. (4) FaceShifter (FSh) [14]
and (5) DeeperForenscis-v1 (DFo) [11] contains high-quality
forgery videos generated from the real videos from FF++. (6)
DeepFake Detection (DFD) [7] is a popular benchmark dataset
for forgery detection with 363 real videos and 3071 synthetic
videos. (7) Korean DeepFake Detection Dataset (KoDF) [13]
dataset is composed of 62,166 real videos and 175,776 fake
videos generated using six face forgery methods. We employed
a validation set for our experiments and utilized the initial 110
frames from each video for analysis.

F.2. Comparisons
To demonstrate the effectiveness of our method, we compare it
with various types of deepfake detectors, including image-based
and video-based detectors. Image-based detectors can be catego-
rized into RGB-based and spatial frequency-based approaches.
RGB-based detectors use RGB images to identify deepfakes,
while spatial frequency-based approaches apply filters or Fourier
transforms to extract spatial frequency, combining these with
RGB information to improve detection.

Similarly, video-based detectors are categorized as RGB-
based and stacked spatial frequency-based approaches. RGB-
based methods in video detectors use individual RGB
video frames for deepfake detection, whereas stacked spatial
frequency-based approaches extract spatial frequencies (sim-
ilar to the image-based frequency methods) and stack them
temporally for enhanced detection.

Also, we categorize certain approaches based on whether
they utilize external datasets. Specifically, LipForensics [8]



Method Clean Saturation Contrast Block Noise Blur Resize Compress Avg.
Xception 99.8 99.3 98.6 99.7 53.8 60.2 74.2 62.1 78.3
CNN-aug 99.8 99.3 99.1 95.2 54.7 76.5 91.2 72.5 84.1
Patch-based 99.9 84.3 74.2 99.2 50.0 54.4 56.7 53.4 67.5
CNN-GRU 99.9 99.0 98.8 97.9 47.9 71.5 86.5 74.5 82.3
LipForensics* 99.6 99.3 98.8 98.7 64.3 96.7 95.8 90.9 92.1
FTCN* 99.5 98.0 93.7 90.1 53.8 95.0 94.8 83.7 87.0
Ours 99.7 99.1 95.8 91.9 55.0 97.3 97.5 88.0 89.2

Table F. Average robustness for perturbations. We present video-level AUC(%) for each perturbation.

and RealForensics [9] incorporate the LRW [3] dataset to learn
representations of lip or facial motions, while StyleFlow [2]
leverages a PsP encoder [17] pre-trained on the FFHQ [12]
dataset to extract style latent.

We have reproduced several methods, including FTCN [20],
CADDM [6], HFF [16], LipForensics [8], RealForensics [9],
AltFreezing [19], and StyleFlow [2]. When available, we used
their pre-trained weights for performance comparison, obtained
from the official GitHub repositories. If the official weights
did not align with our experimental settings, or if the official
weights were unavailable—such as for CADDM, which was
trained on FF++ with FSh—we retrained the models according
to our specific experimental setup.

We report performance using Video-level AUC and Video-
level EER, which are calculated by averaging the clip-level
predictions for each clip input sequence within a video to obtain
a single video-level prediction. The AUC and EER are then
computed based on these aggregated video-level predictions.

F.3. Implementation Details

We use RetinaFace [4] to detect faces and perform face tracking
with SORT [1]. When cropping faces, we picked a region based
on the average point of the landmarks of the faces over 32
frames, cropped the same area for 32 frames, and fed our model
these consecutive 32 frames as input.

Most experiments were conducted using four Nvidia A6000
48GB GPUs with an AMD Ryzen Threadripper Pro 3955WX
16-Cores CPU, or two A100 40GB GPUs with an Intel Xeon
Gold 6240R CPU. In contrast, experiments using only 2D
ResNet, such as Table 1 of the main paper, were conducted
using four Nvidia RTX-3090 24GB GPUs with an Intel i9-
10900X CPU.
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