CCMNet: Leveraging Calibrated Color Correction Matrices
for Cross-Camera Color Constancy

Supplementary Material

A. Additional Experiments

Single CCM. While the main paper assumes the availability
of two calibrated CCMs corresponding to different illumi-
nants, some mobile cameras provide only a single CCM. We
evaluate CCMNet under this constraint by testing it with a
single CCM to assess its robustness in such scenarios. To
validate this, we fixed the interpolation weight g in Eq. 10
to 0.5 (i.e., equal averaging of the two CCMs in existing
datasets) and to O (i.e., using the CCM corresponding to
D65 only). In both cases, a single fixed CCM was used
across all color temperatures for CFE computation. As
shown in Table |, the performance with a single CCM is
either slightly degraded or remains nearly unchanged com-
pared to the dual-CCM setup. Given the histogram resolu-
tion (64 x 64), we believe that projecting the Planckian lo-
cus into the camera RGB space is more impactful than per-
forming precise CCM interpolation. We expect this trend to
hold even when more than two CCMs are available. How-
ever, using too many CCMs during training may increase
the train-test domain gap (e.g., training with 4-5 CCMs but
testing with only one), particularly when testing on an un-
seen mobile camera with a single CCM. Therefore, using
two CCMs remains a reasonable and practical choice.
Inference Time. Previous works like CCC [2] and FFCC
[3] are designed for single-camera settings and are known
for their fast inference. We compare the inference speed
of CCMNet with these CCC-based models. Table 2 com-
pares the runtime of CCMNet with other CCC family mod-
els. Since the official implementation of FFCC is in MAT-
LAB, we used the PyTorch implementation of its dynamic
extension, C5, to enable a fair comparison. For reference,
we report the runtime of two C5 variants: (1) a version that
performs only the filtering and bias operations equivalent to
FFCC/CCC (m=1, FFCC ops only), and (2) the full model
including the dynamic CCC generator (m=1, full). We also
measured the runtime of C5 in cross-camera settings (m=7
& m=9). CCMNet achieves significantly lower inference
time than the cross-camera versions of C5, while main-
taining a competitive runtime compared to FFCC/CCC-a
highly efficient single-camera AWB method.

B. CCMs & CCTs Extraction

In this section, we describe the methodology used to ex-
tract the color correction matrices, low and high correlated
color temperatures (CCT}oyy, CCThygp) information utilized
in our approach. Since CCMs and their correlated CCTs are

Cube+ Gehler-Shi NUS-8
Mean Median Mean Median Mean Median

Two CCMs (original) 1.68 1.16 2.23 1.53 2.32 1.71
Single CCM (g = 0.5)  1.69 1.17 242 1.67 2.31 1.72
Single CCM (g = 0) 1.67 1.12 242 1.60 2.33 1.73

Table 1. Ablation results using a single CCM.

Feature Model GPU CPU

0.23+0.01
4.55+0.03

C5 (m=1, FFCC ops only)  0.18+0.01

Single camera C5 (m=1, full) 1.16+0.05

C5 (m=7) 3.65+0.11 12.24+0.12
Cross camera C5 (m=9) 4.46+0.18 14.46+0.20
CCMNet (ours) 1.32+0.03  10.45+0.06

Table 2. Per-image runtime (milliseconds) comparison of CCC-
variant AWB models.  Experiments were conducted on an
NVIDIA GeForce RTX 3060 GPU and an Intel i9-12900K CPU.

camera-dependent, they can be extracted once and remain
consistent across all images captured by the same camera.

To extract the CCMs and CCTs of a specific camera, we
followed these steps. First, to ensure consistency in data
processing, we converted all raw images to the DNG for-
mat using Adobe DNG Converter, instead of relying on
camera-specific raw file extensions. Second, we extracted
metadata from the DNG files using ExifTool, specifically
retrieving ColorMatrixl, ColorMatrix2, ForwardMatrixl,
and ForwardMatrix2. These matrices were then used for
our imaginary camera augmentation and for testing on pre-
viously unseen cameras during training. For convenience,
we will refer to ColorMatrix and ForwardMatrix as CM and
FM, respectively, throughout this supplementary material.

Fig. 1 illustrates the relationships between color spaces
and the transformation matrices involved. As shown, the
FM transforms white-balanced camera raw colors to the
CIE XYZ color space, while the CM converts from CIE
XYZ to the camera’s native raw color space under a specific
illuminant. The suffixes ‘1’ and ‘2’ in the matrix names in-
dicate calibration for illuminants 1 and 2, corresponding to
standard illuminant A and D65, respectively. Accordingly,
we define CCTjq,, and CCTy,gp, as the color temperatures
of illuminant A (2856K) and D65 (6504K) and use these
values for CCM interpolation, as described in Eq. (10) in
the main paper.

As defined in Eq. (9) in the main paper, the CCM,,,, and
CCMp,;4n matrices used throughout this work correspond
to CM1 and CM2, respectively. Additionally, CM1, CM2,
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Figure 1. A schematic diagram illustrating the use of ColorMatrix
and ForwardMatrix. The ForwardMatrix (FM) transforms white-
balanced raw data into the CIE XYZ color space, while the Color-
Matrix (CM) converts CIE XYZ values of a standard light source
into the camera’s native raw color space. FM1 and CM1 are cali-

brated for standard illuminant A (2856K), and FM2 and CM2 are
calibrated for the D65 illuminant (6504K).

FM1, FM2 are used in the imaginary camera augmentation
process described in Sec. D.

C. Details of the CFE Encoding Process

In this section, we provide additional details on the CFE
(Camera Fingerprint Embedding) encoding process de-
scribed in Sec. 3.3.

Further explanations. As shown in Fig. 2, the essence of
what CFE fundamentally encodes is the color trajectory on
the CIE xy-plane within the correlated color temperature
(CCT) range of 2500K-7500K. These colors correspond to
the light emitted by a black body at a given CCT and are
intrinsic, invariant values. However, due to differences in
the spectral sensitivity of imaging sensors, each device ob-
serves these reference colors as distinct loci. These trajec-
tories inherently represent the unique color characteristics
of each device.

We leverage the fact that this observation process is pre-
computed for two illuminants during the ISP manufacturing
stage and recorded as matrices (CCMs). By interpolating
the two matrices, CCM;,, and CCMp;g4p, and then apply-
ing to the Planckian XYZ locus, we replace the observation
process for each device. The resulting device-specific locus
is then converted into a histogram, which is subsequently
encoded into a CFE feature that captures the fingerprint of
each camera using a CNN-based CFE encoder.

Due to this design approach of the CFE feature, the
CCMNet leverages CFE as guidance, enabling it to infer
and adapt to the color space of a previously unseen camera.
This allows the model to learn a generalized approach to
illuminant color estimation without requiring explicit train-
ing on every individual camera.

Technical details. For the XYZ locus corresponding to
color temperatures from 2500K to 7500K, we used the
colour.temperature.CCT_to_xy function from the
colour Python library. A total of 51 chromaticity coordi-
nates were sampled at 100K intervals, ranging from 2500K
to 7500K.

As mentioned in the main paper, the sampled XYZ locus
was transformed into the camera’s native raw RGB space
by interpolating between CM1 and CM2. This was fur-
ther converted into a histogram with 64 bins, within the
uwv range of [-0.5, 1.5]. The resulting 64 x 64 x 1 histogram
was processed by the CFE encoder, which outputs an 8-
dimensional embedding vector. The CFE encoder consists
of four DoubleConvBlocks followed by a projection
head. Each DoubleConvBlock processes the input by
applying two convolutional layers, each with a kernel size
of 3 x 3, a stride of 1, and a padding of 1, followed by a
LeakyReLU activation. This is then followed by a 2 x 2
max-pooling layer and batch normalization. The projec-
tion head flattens the feature map and maps it to an 8-
dimensional embedding vector using an MLP with two hid-
den layers.

D. Camera-to-Camera Mapping

In Sec. 3.4 of the main paper, we introduced our imag-
inary camera augmentation, which assumes two versions
of the same image in the camera’s native raw RGB space.
To satisfy this condition, we perform a camera-to-camera
mapping inspired by [1]. In this section, we provide a de-
tailed explanation of the camera-to-camera mapping pro-
cess used in our work. Specifically, in Sec. D.1, we explain
the process of computing the correlated color temperature
(CCT) of a light source in the target camera’s native raw
RGB space. Then, in Sec. D.2, we describe how to gen-
erate a pool of white-balanced, camera-independent XYZ
images using the RGB values of the light source and the
corresponding CCT. In Sec. D.3, we describe the process of
generating a device-specific illumination pool for random
sampling. Finally, Sec. D.4 explains our camera-to-camera
mapping, which presents a reference image in two differ-
ent camera-native raw RGB spaces. The reference image is
sampled from the XYZ image pool, while the illumination
is sampled from the augmented ground-truth (GT) illumina-
tion pool of each camera. The overall process is visualized
in Fig. 3.

While our camera-to-camera mapping is inspired by the
CS5 augmentation approach [1], it differs in the following
ways. First, we remove C5’s restriction that limits sampling
from the illumination pool to similar scenes with matching
capturing settings (e.g., ISO, exposure time) and illumina-
tion CCT. Specifically, in C5, both the sampled scene image
from the CIE XYZ space and the sampled illuminant from
the target camera were required to have similar capturing
settings and CCT. In contrast, our approach removes this
constraint, eliminating the need to rely on capturing settings
and allowing for greater diversity in augmentation. Addi-
tionally, instead of sampling from a fitted cubic polynomial
based on the target camera’s illuminant samples, we use a
fitted cubic polynomial based on the illuminant values from
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Figure 2. Detailed visualization of CFE encoding process. As mentioned in the main paper, the camera’s fingerprint is derived by converting
the reference CIE XYZ colors (locus) along the correlated color temperature (CCT) range of 2500K-7500K into the corresponding RGB
locus as observed by each device, followed by an encoding process. Due to this characteristic, the CFE feature inherently reflects the color

characteristics induced by each camera’s spectral sensitivity.
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Figure 3. Overall process of camera-to-camera mapping. In (A), subsets of images taken by different cameras from multiple datasets are
white-balanced using the corresponding ground-truth illuminants, and the ForwardMatrix is used to convert them to the CIE XYZ space,
creating the XYZ image pool. In (B), a reference image is sampled from the pool, and an illumination color is sampled from the augmented
illumination pool of the source camera (Camera A) that originally captured the image. The sampled illumination is then mapped to the
native RGB space of a randomly selected target camera (Camera B) using the ColorMatrix. Finally, in (C), the XYZ image is transformed
into the white-balanced color space of Cameras A and B using the inverse of their respective ForwardMatrices, and illumination casting is
applied by multiplying the images with the illumination RGB values of each camera space.

the source camera’s dataset (i.e., the camera from which the
reference XYZ image was taken). The sampled illuminant
is then transferred to the CIE XYZ space using the inverse
of the source camera’s CM, followed by a transformation of
these CIE XYZ illuminant values into the native raw RGB
space of the target camera.

D.1. Ilumination RGB to CCT Conversion

The illuminant estimation datasets used in the main paper
provide GT illumination RGB labels for each scene in the
camera’s native raw RGB space. According to the Adobe
DNG specification, given CM1 and CM2 (extracted for
each camera as described in Sec. B), along with the GT il-
lumination RGB, the CCT and CIE XYZ values of the light



source can be computed using Algorithm 1.

Algorithm 1 Conversion of Illuminant Raw RGB to CCT
and XYZ Coordinates

1: function CAMNTRL_TO_XYZ(illum, cm1, cm2)

2: xy =[0.3127, 0.3290]
3: while True do
4: cct = colour.temperature.xy_to_CCT(xy)
5: color_matrix = interpolate_ccm(cct, cml, cm2)
6: color_matrix_inv = np.linalg.inv(color_matrix)
7 xyz = np.dot(color_matrix_inv, illum)
8: X,Y,Z=xyz
9: xynew = [X/(X+Y+2),Y/(X+Y +7Z)]
10: if np.allclose(xy, xy_new, atol=1e-6) then
11: return xyz, cct
12: end if
13: Xy = Xy_new
14: end while

15: end function

The algorithm iteratively estimates the CCT and converts
illuminant RGB values to the CIE XYZ space. Using meta-
data such as CM1 and CM2, it interpolates the appropriate
color correction matrix for the estimated CCT and applies it
to transform the input illumination into the CIE XYZ space.
The resulting XYZ coordinates and CCT values are then
used either to generate the camera-independent XYZ image
pool in Sec. D.2 or to transform the illumination into the
target camera RGB space in Sec. D 4.

D.2. Unified XYZ Image Pool Generation

In this section, we describe the process of creating an
XYZ image pool for camera-to-camera mapping by con-
verting images captured by various cameras into the device-
independent XYZ color space. The process involves two
main steps: (1) white balancing with GT labels, and (2)
transforming to the CIE XYZ color space using the For-
wardMatrix (FM). Refer to Fig. 1 and Fig. 3-A.

As explained in the main paper, we use multiple datasets
captured by various cameras, each including GT illumina-
tion labels that enable accurate white balancing of images in
the camera’s native raw RGB space. As described in Sec. B,
we extract FM1 and FM2 for each camera. Using the CCT
of the GT illumination, we interpolate between FM1 and
FM2 to transform the white-balanced images into the XYZ
color space. The CCT is computed from the GT illumina-
tion RGB using the method detailed in Sec. D. 1.

This process mitigates the dependency on camera speci-
fications, and in theory, the images are independent of cam-
era models and illumination conditions. By aggregating
these images, we construct a unified XYZ image pool that
serves as the foundation for camera-to-camera mapping.

D.3. Camera-specific Illumination Pool Generation

Next, we generate an illumination pool for each camera.
While it is possible to use only the GT illuminations, we
adopt the augmentation method proposed in [1] to enhance
generality and diversity. This method involves fitting a cu-
bic polynomial to the GT illuminations for each camera
and then introducing random shifts to augment the illumina-
tions. For further details, please refer to the supplementary
material of [1]. On the right side of Fig. 3-B, we show a
plot of the illumination pool for a specific camera (Camera
A). In this plot, the red points represent the GT illumina-
tion labels extracted from the dataset, while the blue points
correspond to the augmented illuminations.

D.4. Camera-to-Camera Image Synthesis

In this section, we describe a camera-to-camera mapping
method that simulates the same scene as if it were cap-
tured by two different cameras, using the image pool from
Sec. D.2 and the illumination pool from Sec. D.3. See
Fig. 3-B and C.

Scene and Illumination Sampling & Mapping. First, a
scene is randomly selected from the XYZ image pool. Next,
an illumination is randomly sampled from the illumination
pool of the source camera that captured the selected scene.
This sampled illumination is then transformed into the na-
tive raw color space of a randomly selected target camera
from the set of cameras used (see Fig. 3-B). As illustrated
in Fig. 1, the XYZ values of the sampled illumination are
computed by applying the inverse of the source camera’s
ColorMatrix (CM). These XYZ values are then multiplied
by the target camera’s CM to obtain the native raw color of
the illumination in the target camera’s color space. The in-
terpolation of each camera’s CM is based on the CCT of the
illumination, which is calculated using the steps described
in Sec. D.1.

Synthesizing Paired Scene from Two Cameras. Finally,
as illustrated in Fig. 3-C, we generate two raw images of the
sampled scene, as if it were captured by the selected two
cameras under the same sampled illumination. As shown
in Fig. 1, the white-balanced XYZ image is transferred to
the cameras’ native raw space in two steps. First, using
the same CCT employed during CM interpolation in illu-
mination mapping, the FMs of cameras A and B are inter-
polated, and their inverses are applied to the XYZ image.
This step produces two white-balanced raw images, one for
each camera. Next, the camera-native illumination RGB
values—sampled from camera A and mapped to camera B as
described in previous paragraph—are multiplied with these
raw images. The resulting image pair simulates the same
scene and lighting conditions as captured by two different
cameras, all derived from a single XYZ image.



E. Imaginary Camera Augmentation Visual-
izations

Here, we provide additional visualizations of the imagi-
nary camera augmentation. As shown in Fig. 4, Imaginary
Camera Augmentation simulates images captured by virtual
cameras that interpolate the properties of two real-world de-
vices. This data augmentation technique also interpolates
the CCMs at the same ratios to generate the CCMs for these
virtual cameras.

F. Experimental Setup

As mentioned in the main paper, the backbone f uses the
standard U-Net-like architecture from C5 [1]. However,
unlike C5, we do not use additional images from the test
camera, so no extra encoders are employed. Instead, we
use a single Encoder-Decoder U-Net architecture. The en-
coder and decoder are connected via skip connections, with
each consisting of four DoubleConv layers. In the en-
coder, each DoubleConv layer is followed by max pool-
ing, while in the decoder, feature upsampling and skip con-
nections are applied before each DoubleConv layer.

The batch size was set to 16, and training was conducted
over 50 epochs with an initial learning rate of 5 x 1074,
A learning rate decay of 0.5 was applied at epoch 25. The
Adam optimizer [5] was used for training.

For data augmentation, camera-to-camera mapping and
imaginary camera augmentation are applied exclusively us-
ing the camera subsets from the training datasets, excluding
the test dataset. For instance, when evaluating the Cube+
dataset, the augmented dataset used for model training is
generated from images and CCMs from the Gehler-Shi [7],
NUS-8 [4], and Intel-TAU [6] datasets.

G. Additional Results

We present additional visualization results in Fig. 5 and
Fig. 6. As shown in Fig. 5, CCMNet achieves satisfactory
accuracy across various scenes captured by a camera it has
never encountered during training. In Fig. 6, we demon-
strate that CCMNet maintains robust accuracy across a set
of unseen cameras.
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Figure 4. Results of our imaginary camera augmentation. In each row, the leftmost and rightmost images represent the source and target
camera images generated using the method described in Sec. D, while the three middle images represent those produced by the imaginary
camera, generated by interpolating between the two devices at ratios of 0.25, 0.5, and 0.75, respectively. As explained in Sec. 3.4 of the
main paper, the CCMs of the imaginary cameras are interpolated using the same alpha values applied during image interpolation, and the
resulting CFE embeddings are generated for training. Brightness is adjusted for visibility.
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Figure 5. Additional results for Canon EOS 1Ds Mark III. CCMNet demonstrates superior performance on various scenes captured by
unseen camera. Notably, CCMNet has never been exposed to any images or the CCM of the Canon 1Ds Mark III during training.
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Figure 6. Additional results for various cameras show that CCMNet exhibits robust performance across a range of unseen cameras.
Importantly, it has not been exposed to any images or CCMs from the cameras shown in the figure during training.
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