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Supplementary Material

A. Keypoint Descriptions

We create the names and descriptions of keypoints for all
100 categories. The names can be divided into two types:
one that has its own unique name, e.g., left shoulder,
right eye, and the other that does not have its own
name. the latter is difficult to define due to the densely
distributed position. We concentrate on designating the lat-
ter and determine the names using their relative positions
in each category; for example, “upper”, “central”, “lower”.
The descriptions are represented with the keypoint position
in the category and its relation with other keypoints; e.g., in
the animal body, the description of left front paw is
defined as “The left front paw is the lower end of the left
forelimb, used for movement and manipulation of objects.
It is positioned below the left elbow and connected with the
left elbow”. A detailed example can be found in Table 19.

B. Exploring other Design Choices

B.1. Instruction

w/ description  w/ keypoint list PCK@0.05 PCK@(0.2 mPCK

X X 72.60 96.22 89.86
X 78.43 96.98 91.98
77.36 95.80 90.97

names is not helpful for improving the model, rather reduc-
ing its performance. Next, we explore whether two optional
conditions affect the performance or not: one is encompass-
ing a conversation outline [17] and the other is to diversify
the question expression in instruction. The outline slightly
modified from the prior work [17] seems not to influence to
solve the problem that predicts coordinates, and the random
question does not have any positive effect on the perfor-
mance, actually leading to a decrease in the model’s perfor-
mance(Table 11).

Multi-round PCKO0.05 PCK0.10 PCK0.15 PCK0.20 PCK0.25 mPCK

k=1 78.29 91.55 95.19 96.89 97.88 91.96
k=2 72.82 88.06 92.79 95.30 96.56 89.11
k=4 78.43 91.34 95.26 96.98 97.90 91.98
k=6 7433 89.82 94.17 96.36 97.46 90.43
k=8 75.28 89.89 93.99 96.16 97.41 90.55

Table 12. Ablation in multi-round k. Default config .

Choice of round k£ We investigate the optimal number of
rounds k in the conversation. Table 12 shows that under
the same training conditions, the highest performance was
observed when £ is set to 4. No explicit tendency was found
as k changed.

Table 10. Effect of additional info for keypoints in training.
Default config .

Diverse questions  Add conversation outline PCK@0.05 PCK@(0.2 mPCK

X X 78.43 96.98 91.98
X 74.24 96.56 90.56

X 75.08 96.27 90.63
68.24 95.93 88.52

Table 11. Effect of adding a conversation outline and diversifying
question expressions. Default config .

Instruction variations As mentioned in Sec 3.2, we in-
clude not only the names but also descriptions of the key-
points in the instructions to help the model better to reason
the location of keypoints. We examine how the descrip-
tion affects model performance by training the model with-
out descriptions. The result in Table 10 shows that without
descriptions, the accuracy decreases over 2%p in mPCK,
suggesting that the keypoint description plays a significant
role in enhancing to find the exact position. We experiment
another scenario to include all keypoint names for each cat-
egory in the instruction as “Keypoint List”. As shown in
Table 10, unlike keypoint descriptions, the list of keypoint

LLM Step-by-step instruction PCK@0.05 PCK@(0.2 mPCK
, X 78.43 998  91.98

Llama3.1-88 [§] 76.06 9648 911
x 76.46 9641 9120

Llama3.2-1B [1] 76.65 96.75 9149

Table 13. Performance comparison with step-by-step instruction
across different LLMs. Default config .

Different style of instruction We take another structure
of instruction question-answering in a step-by-step manner,
so-called step-by-step instruction(Figure 6). Specifically,
Rather than providing instruction as Figure 2, we question
what the object is and then inquire the coordinates of key-
points. We expect this approach would help the model bet-
ter understand the input. Interestingly, the effect of this
mechanism varies depending on the LLM, as in Table 13.
It appears that different LLMs require different approaches
to better understand the instruction.

B.2. Architecture

Choice of visual encoder We conduct an ablation study
for the visual encoder in CapeLLM. We choose three pop-



Visual Encoder PCK0.05 PCK0.10 PCK0.15 PCK0.20 PCK0.25 mPCK Instruction Output format PCK@0.05 PCK@0.2 mPCK
DINO-v2-reg [7]  62.52 86.00 92.83 95.83 97.34 86.90 text 78.43 96.98 91.98
- Base instruction . = ) E
Hiera [27] 56.13 8331 91.99 95.67 97.35 84.89 special token 76.06 96.48 91.11
DINO-v2 [21] 78.43 91.34 95.26 96.98 97.90 91.98 Sten-by-sten instructi text 76.46 96.41 91.20
CP-DYy-SIep ISUCHON e vial token 76.65 96.75 91.49

Table 14. Ablation in visual encoders. Default config .

Fine-tuning method PCK0.05 PCK0.10 PCK0.15 PCK0.20 PCK0.25 mPCK

None (Frozen) 69.69 88.16 92.62 95.07 96.41 88.39
LoRA [10] 78.43 91.34 95.26 96.98 97.90 91.98
Full parameters 6.93 23.72 4241 55.31 64.56 38.59

Table 15. Ablation in fine-tuning methods. Default config .

ular visual encoders: DINO-v2 [21], Hiera [27], DINO-v2-
reg [7], which are pre-trained on same dataset. Table 14
shows that using DINO-v2 [21] yields the highest perfor-
mance. The known issue in DINO-v2, artifacts in the fea-
ture maps [7]), seems to have little impact on performance
in the CAPE task. A noteworthy point is the number of
image tokens. Although Hiera [27] has 20% less image
tokens than the other two encoders, the performance gap
is just about 1%p, implying that retaining a larger num-
ber of image tokens does not necessarily have something
to do with performance. Then, we examine three types
of fine-tuning methods: full fine-tuning, fine-tuning with
LoRA [10], and freezing. In constrat with the traditional
MLLMs [17, 32, 43], visual encoder with LORA was more
advantageous than the other two options as [31](Table 15).
Notably, the full fine-tuning approach, where all parame-
ters are learnable, drastically deteriorate the performance.
This fact seems to imply that when using relatively small
datasets, leaving all parameters trainable may lead to over-
fitting, thus resulting in severe degradation in performance.

LLM PCK0.05 PCKO0.10 PCKO0.15 PCK0.20 PCK0.25 mPCK
Llama3.2-1B [1] 76.46 91.05 94.69 96.41 97.40 91.20
Vicuna-7B-v1.5 [42] 62.15 84.40 91.51 94.79 96.33 85.84
Mistral-7B-v0.3 [11] 77.63 91.32 94.90 96.46 97.54 91.57
Llama3.1-8B [8] 78.43 91.34 95.26 96.98 97.90 91.98

Table 16. Ablation in LLM. Default config .

Choice of LLM To analyze the performance variations
coming from different LLMs, we select four most recent
and popular language models: Vicuna-7B [42], Mistral-
7B [11], Llama3.1-8B [8], and Llama3.2-1B [1]. We find
that the overall accuracy gets improved as the size of the
LLM increases( Table 16). Exceptionally, Llama3.2-1B [1]
exhibits an overwhelming result surpassing that of a 7B-
sized LLM, Vicuna-7B-v1.5, which appears to be the effect
of effectively transferring the knowledge of a larger model
through distillation training methods [1]. A larger vocabu-
lary size seems to play a essential role to positively influ-
ence the integration of visual information and language.

Table 17. Comparison with token output format. Default config .

Pre-training method PCK@0.05 PCK@0.2 mPCK

w/o pre-training 78.43 96.98 91.98
Direct QA 78.98 96.60 91.96
Step-by-step QA 78.05 96.23 91.40

Table 18. Comparison in pre-training methods. Default config .

Token output format We explore a method that utilizes
token embeddings <KEYPOINT> instead of text-based out-
puts. To introduce this method to our pipeline, some modi-
fications in instruction should be made: the coordinates are
replaced with special token <KEYPOINT> as answers, ac-
cordingly the vocabulary size increases, and input embed-
dings are turned into the trainables. The tokens are turned
into the output embeddings from the LLM and are fed into
a task-specific decoder. Typically, while a grounding-based
pre-trained decoder is used in some tasks [14, 33, 36], no
suitable decoders exist for CAPE. So, we create a simple
decoder that transforms the embeddings into the coordi-
nates and train it from scratch. We validate this method
on both default instruction(as Figure 2) and step-by-step
one(Figure 6). Despite the lack of pre-training, the method
using <KEYPOINT> outputs comparable result to models
with default architecture(Table 17).

C. Pre-Training Strategy

We attempt two types of pre-training process: direct QA
and step-by-step QA. The direct QA has an instruction that
it is in the form of asking and answering the name of the
keypoint corresponding to the coordinates, as in Figure 7.
On the other hand, step-by-step QA in Figure 8 has an in-
struction that is in the form of asking about the category, in-
quiring the existence of the keypoint in the image, and then
inducing the selection of the keypoint corresponding to the
coordinates. Referring to the related works [22, 32, 36], all
layers except for projection layer are frozen in this stage.
As a consequence, there is no positive effect on the per-
formance gain, as shown in Table 18. In light of the
use of large-scale pre-training data in the previous meth-
ods [22, 31, 32, 36], we conjecture that the limited number
of images in each category might result in this outcome.



Keypoint

Description

Left eye The left eye is one of the two visual organs located on the face. It is positioned slightly
to the left of the nose and just below the brow ridge, visible from the front.

Right eye The right eye is the visual organ located on the right side of the face. It is situated to the
right of the nose and directly opposite the left eye.

Nose The nose is the central, protruding feature on the face, located just above the upper lip.
It is positioned between and slightly below the eyes

Neck The neck is the part of the body connecting the head to the torso that refers to the area

from the shoulders to the hip joints. It is located below the head, near the junction where
the shoulders meet the body.

Root of tail

The root of the tail is at the base of the spine, where the tail begins. It is located near
the lower back, above the hips.

Left shoulder

The left shoulder is the joint connecting the left arm to the torso. It is situated to the left
of the neck and above the left elbow.

Left elbow

The left elbow is the joint in the middle of the left arm, connecting the upper arm to the
forearm. It is located between the left shoulder and the left front paw and connectd with
them.

Left front paw

The left front paw is the lower end of the left forelimb, used for movement and manipu-
lation of objects. It is positioned below the left elbow and connected with the left elbow.

Right shoulder

The right shoulder is the joint connecting the right arm to the torso. It is located to the
right of the neck and above the right elbow.

Right elbow

The right elbow is the joint in the middle of the right arm, connecting the upper arm
to the forearm. It is situated between the right shoulder and the right front paw and
connectd with them.

Right front paw

The right front paw is the lower end of the right forelimb, used for movement and
manipulation of objects. It is located below the right elbow and connectd with the right
elbow.

Left hip

The left hip is the joint connecting the left leg to the torso. It is positioned below the
root of the tail and above the left knee.

Left knee

The left knee is the joint in the middle of the left leg, connecting the upper leg to the
lower leg. It is located between the left hip and the left back paw and connectd with
them..

Left back paw

The left back paw is the lower end of the left hind limb, used for movement and support.
It is situated below the left knee.

Right hip

The right hip is the joint connecting the right leg to the torso. It is positioned below the
root of the tail and above the right knee.

Right knee

The right knee is the joint in the middle of the right leg, connecting the upper leg to the
lower leg. It is located between the right hip and the right back paw and connectd with
them.

Right back paw

The right back paw is the lower end of the right hind limb, used for movement and
support. It is situated below the right knee.

Table 19. An example of descriptions: animal body



/USER: What do you think is the central object in this image? \
ASSISTANT: The object that this image is trying to express seems to be a {category name}.

USER: Can you identify location of {nose} on the object? The {nose} is the central, protruding
feature on the face, located just above the upper lip. It is positioned between and slightly below
the eyes. With this description, please provide its coordinates.

QSSISTANT: {coordinates} /

Figure 6. Step-by-step instruction. The nose is in the example above, which can be replaced with whatever you want to find out. The
underlined is the description of nose, which can also be replaced according to the keypoint.

USER: What is the name of a keypoint at [0.123,0.456] in the image? Tell me the name and why.

ASSISTANT: The keypoint name is nose, because the nose is the central, protruding feature on
the face, located just above the upper lip. It is positioned between and slightly below the eyes.

Figure 7. Instruction of direct QA for pre-training.

ﬁoint list: nose, left eye, right eye, ... \

USER: What do you think is the central object in this image?

ASSISTANT: The object that this image is trying to express seems to be a {human body}.

USER: What joints can you identify on the {human body} in the image? Answer according to the
order in the joint list.

ASSISTANT: The {human body} in the image seems to have several joints in the list, named
{nose, left eye, right eye}. Those joints are visible in the image.

USER: Can you identify which joint is located at the coordinate {location}? This coordinate
represent relative position within the image, where the top-left corner is defined as [0, 0] and the
bottom-right corner as [1, 1]. For example, [0.5, 0.5] indicates the center of the image

\iSSISTANT: the joint located at coordinates is {left eye}. /

Figure 8. Instruction of step-by-step QA for pre-training.




