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A. Implementation Details
In this section, we introduce the details of our method for

modeling Dynamic Affordance. From Sec. A.1 to Sec. A.4,
we cover our first pipeline, 4D HOI Sample Generation.
Sec. A.5 and Sec. A.6 describe our second pipeline, learning
Dynamic Affordance.

A.1. Rendering Object from Multi-Viewpoints
For camera installation, we position eight perspective

cameras evenly spaced at 45°intervals around the object
at a fixed elevation of 5°. The radius (distance of camera
to origin) is set as a hyperparameter along with additional
adjustment of camera’s z-coordinate to ensure the object fits
within the image frame. To have a consistent camera setup
in the uplifting pipeline, we follow GVHMR [19] and set the
intrinsic parameters as follows.

K =

f 0 w/2
0 f h/2
0 0 1

 , (1)

where f =
√
h2 + w2 and h, w represent the height and

width of our rendering image, respectively. In practice, we
use h = 800, w = 1200 for rendering. For object installa-
tion, relatively large and stationary ground-placed objects
(e.g., motorcycles) are placed at the origin in a canonical
state, while small and portable objects (e.g., umbrellas) are
perturbed by sampling their position and rotation within a
certain range. The range of the position and rotation is set as
a hyperparameter.

A.2. Generating 2D HOI images
For the image rendered in Sec. A.1, we use the Canny

edge detector [2] to obtain structural guidance. In practice,
we use an upper threshold of 30 and a lower threshold of
25 to capture dense structures. We use the obtained Canny
edges as input of ControlNet [22] and leverage the off-the-
shelf pre-trained 2D diffusion model, FLUX [12], to gen-

erate the 2D HOI Image. Unlike other approaches [9] that
directly use inpainting on the rendered object, maintaining a
consistent background color (e.g., white, gray), our method
generate background, offering the advantage of aligning with
the training domain of the video diffusion model while pro-
viding motion cues to the world-grounded HMR (e.g., if
the background moves left, the subject moves right). For
specific settings, we use a classifier-free guidance scale of
3.5, 28 inference steps, and the FlowMatchEulerDiscrete
scheduler [3] for image generation. In cases where it is natu-
ral for a person to occlude an object (e.g., a hand occluding
the handle of a cart), strong structural guidance can lead to
the generation of implausible images. Therefore, we set the
ControlNet [22] conditioning guidance as 0.725 for the first
12 denoising steps, and 0.0 for the later steps. We empirically
find that this approach helps generating plausible HOI image
considering appropriate occlusion. For the text prompt for
generating images, we use a vision-language model [15] to
automatically obtain prompts that include HOI. Specifically,
we obtain the text prompt using the following input.

Write a text prompt in two sentence. The format of
the text prompt should start with “1 person” and
should include word “{category}”. Write a de-
tailed text prompt focusing on human pose and the
interaction between “1 person” and “{category}”.
The third word of the first sentence must describe
the interaction.

We add the additional tag “, full body” at the end of the
obtained text prompt, which we find beneficial for expressing
the holistic body in image. While we know the category of
the input 3D object in many cases, we use the rendering of
the object to request a prompt if the category is not available.

A.3. Generating 2D HOI Video from 2D HOI Image
We use a pre-trained video diffusion model [11] to gen-

erate 2D HOI videos from 2D HOI images. For the text
prompt, we use the same one used for generating the 2D
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Figure 1. Obtaining Object Motion. We first leverage off-the-shelf world-grounded HMR to obtain human motion and corresponding
camera motion. Then, for the object vertices visible in our rendering camera, we find the 2D correspondences across the video. Using the
2D-3D correspondence of the vertices and camera pose for every frame, we compute the object pose for each frame via PnP.

Figure 2. Resolving Depth Ambiguity. To resolve the depth ambiguity between human and object motion, we leverage weak depth cues
obtained from a metric depth model and contact cues, based on the intuition that object movement is driven by human contact. By optimizing
the human and object scales using these cues, we obtain the 4D HOI sample.

HOI image. As the video diffusion model support only spe-
cific resolution conditions, we resize both the input image
and the output video.

A.4. Lifting 2D HOI Videos to 4D HOI Samples

We detail the process of (1) computing object motion and
(2) resolving depth ambiguity which are used to lift 2D HOI
Videos into 4D HOI samples with additional figures (Fig. 1,
Fig. 2).
Obtaining Object Motion. We leverage an off-the-shelf
world-grounded HMR, GVHMR [19] to obtain both human
motion and the corresponding camera motion in world co-
ordinates. The core idea for obtaining the remaining object
motion is to find 2D-3D correspondences for each frame.
As we use a camera model same with GVHMR [19] for
rendering, it is possible to transform (rotation and trans-
lation of) the rendering camera to the first frame camera
of GVHMR’s output. Using the same transformation, we
obtain the initial (first frame) object pose aligned with the
human and camera motion. At the same time, we obtain

the vertices of the object visible in the rendered camera
through raycasting [18], and find the correspondences of 2D
projection points across the generated 2D HOI Video via
video tracking [7, 8]. Through this, we establish the 2D-3D
correspondences of the vertices for each frame with known
camera motion, allows PnP [4, 13] to compute object pose
for each frame, as shown in Fig. 1.

Resolving Depth Ambiguity. Even after obtaining the
human motion, camera motion, and object motion aligned
on 2D, the human motion and object motion do not interact
with each other in 3D space. To resolve the depth ambigu-
ity that occurs on perspective camera rays, we optimize the
object’s scale in the first frame using (1) weak depth cues
and (2) contact cues. First, we use a publicly available depth
estimation model [1] to predict the metric depth from the
generated images. As shown in Fig. 2, the visible vertices of
the human and the object, obtained through raycasting [18]
are projected into 3D space to construct a point cloud. The
MSE distance between the human point cloud and the cor-
responding visible 3D vertices of the human is defined as



Figure 3. Architecture of Human Conditioned Object Pose Diffusion Model. We design a diffusion model that generates a plausible
object pose for interacting with a given human pose. Each object pose, time step, and human pose are encoded by MLP. The concatenated
features then pass through different MLPs, producing an object pose output consisting of 6D rotation and translation.

Lh, and we define Lo similarly. Additionally, based on the
intuition that the object must be in contact with the human
to have movement, we define LHOI as the loss, calculated
as the average distance of the n closest 3D vertices of the
object to the 3D vertices of the human. In practice, we set
n to one-third of the total number of vertices in the object
mesh. We define the final loss as Ltotal = Lh + Lo + LHOI
and optimize the scales of the human and object, sh, and
so, to obtain to s∗h, and s∗o. To preserve the real-world scale
of the human, we fix the human scale and only adjust the
object’s scale by s∗o/s

∗
h.

A.5. Network Architecture
We describe the network architecture of (1) LoRA for

MDM and (2) the Human-Conditioned Object Pose Diffu-
sion Model, which form our DAViD.
LoRA for MDM. To learn concepts through LoRA [6], we
model the concepts represented by the samples using text
prompts. To ensure that the text effectively models the con-
cepts demonstrated by the given samples, we add LoRA [6]
layers to the multi-head attention within the transformer en-
coder layer of the pre-trained MDM. Specifically, we add
four 2-layer MLPs for query, key, value, and output pro-
jection, respectively for a single transformer encoder layer,
allocating them as a space to learn additional knowledge.
We add this to all 8 transformer encoder layers stacked in
the transformer encoder.
Human Conditioned Object Pose Diffusion Model. To
model the conditional object pose based on the given human
pose, we design a score-based diffusion model. We encode
the object pose, timestep, and human pose using each MLP,
concatenating the feature vectors to construct the total fea-
ture. The feature is then fed into three different MLPs, which
output the scores for Rx, Ry , and T , where Rx and Ry con-
stitute the 6D rotation representation, and T represents the

translation. The overall architecture is shown in Fig. 3.

A.6. Training Details

In this section, we describe the training details of (1)
LoRA for MDM and (2) the Human Conditioned Object
Pose Diffusion Model, which form our DAViD.

LoRA for MDM. For training the LoRA [6] layer in the pre-
trained MDM [20], we create a dataset by extracting only the
human motion from previously generated 4D HOI samples
and processing it following HumanML3D [5]. The number
of training samples varies by object category, ranging from
5 to 50, and we figure out that this amount is sufficient for
learning the concept of human motion through LoRA [6].
During training, we freeze all other weights and train only
the weights of the LoRA [6] layer. As our concepts are
represented in the form of text, we use object category as a
text prompt for training our LoRA. For motions with multiple
modes (e.g., left and right hand-object interactions), the text
prompt is modified by adding tags such as “left ” or “right ”
before the main tag. We found that simply adding these
additional tags gives controllability to model. We train a
total of 500 to 3000 steps (depending on categories) using
the Adam [10] optimizer with a learning rate of 1 × 10−4

without decay.

Human Conditioned Object Pose Diffusion Model. For
training human conditioned object pose diffusion model,
we extract pairwise human pose and object pose from each
frame of the 4D HOI Sample and use them as training data.
The number of data samples used varies by object category,
ranging from 765 to 7, 650. We train total of 1000 to 5000
steps (depending on categories) using the Adam [10] opti-
mizer with a learning rate of 5× 10−3 and a weight decay
of 0.99.



Figure 4. Additional Qualitative Results. We showcase additional results of our method. We present diverse samples generated from our
DAViD, with each frame visualized in temporal order.

Figure 5. Qualitative Results on FullBodyManip Datatset. We
showcase additional qualitative results of DAViD trained on the
FullBodyManip dataset.

B. Experimental Details
B.1. Additional Qualitative Results

We showcase additional qualitative results in Fig. 4 and
Fig. 5. In Fig. 4, we show the results of generating various
HOI motions using our trained DAViD. Through the results
of generating various HOI motions, we demonstrate that our
LoRA [6] faithfully learns the dynamic patterns during HOI.
In Fig. 5, we show the qualitative results generated from
DAViD, trained on the FullBodyManip [14] dataset. We
demonstrate that DAViD is not only able to learn coherent
and simple HOI patterns, but also capable of generating
relatively complex HOI motions.

B.2. Additional Quantitative Results
We report additional comparisons with our baselines for

each category of the FullBodyManip dataset in Tab. 1. As
our TGS automatically detects potential contact points and
guides them closer during sampling, we vary the threshold
of potential contact ρ to examine the effect of our guidance.

Note that the potential contact threshold ρ used in TGS
is lower than the threshold used for evaluating the metric
(0.05), to ensure that points not considered as contact by
the model are not forced into contact. As shown in Tab. 1,
our contact guidance in TGS significantly improves recall
and consequently the F1 score. We demonstrate that our
contact guidance allows to sample fine-grained hand-object
contact on the coarse distribution learned by our object pose
diffusion model. In contrast, precision tends to remain stable
or decrease as the threshold level increases, which appears
to be a side effect of unintended potential contacts detected
in the early stage of the denoising preocess. Empirically, we
find that maintaining a low threshold around 0.02 minimizes
side effects and is effective for sampling fine-grained hand-
object contact.

B.3. Scale of the Object
As our human conditioned object pose diffusion model

generates plausible object pose for a given human pose, it
does not provide information about the object’s scale. Since
the output human of MDM and the human in the training
data both have a uniform scale of 1.0, we automatically
determine the appropriate object scale in the generated HOI
motion by sampling between the minimum and maximum
scales of objects existing in our 4D HOI Samples.

B.4. Generalizability Across Input 3D Objects.
By leveraging pre-trained 2D diffusion models, our 4D

HOI sample generation pipeline is scalable to various object



Methods
Clothesstand Floorlamp Largebox Largetable Monitor Plasticbox Smallbox

Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑

DAViDρ=0.00 0.667 0.088 0.156 0.611 0.297 0.400 0.894 0.578 0.702 0.917 0.500 0.647 0.807 0.38 0.517 0.934 0.463 0.619 0.988 0.464 0.632
DAViDρ=0.01 0.913 0.309 0.462 0.500 0.486 0.493 0.862 0.311 0.457 0.743 0.197 0.311 0.847 0.485 0.617 0.848 0.275 0.415 0.985 0.515 0.676
DAViDρ=0.02 0.765 0.382 0.510 0.531 0.459 0.493 0.889 0.497 0.637 0.929 0.598 0.728 0.799 0.442 0.570 0.865 0.553 0.675 0.986 0.508 0.671
DAViDρ=0.03 0.536 0.221 0.313 0.600 0.243 0.346 0.863 0.547 0.669 0.837 0.545 0.661 0.823 0.523 0.640 0.821 0.471 0.599 0.982 0.545 0.701
CHOIS 0.615 0.353 0.449 0.667 0.378 0.483 0.773 0.211 0.332 0.783 0.136 0.232 0.827 0.156 0.263 0.674 0.119 0.202 0.957 0.239 0.382

DAViDρ=0.00 0.667 0.098 0.171 0.784 0.138 0.235 0.951 0.485 0.642 0.808 0.371 0.509 0.849 0.345 0.491 0.881 0.349 0.500 0.991 0.528 0.689
DAViDρ=0.01 0.429 0.197 0.270 0.615 0.114 0.193 0.979 0.539 0.695 0.839 0.173 0.287 0.895 0.488 0.632 0.824 0.371 0.512 0.990 0.610 0.755
DAViDρ=0.02 0.405 0.279 0.330 0.667 0.276 0.391 0.954 0.488 0.645 0.873 0.456 0.599 0.911 0.602 0.725 0.800 0.446 0.572 0.989 0.649 0.784
DAViDρ=0.03 0.571 0.328 0.417 0.472 0.119 0.190 0.959 0.588 0.729 0.868 0.533 0.661 0.877 0.564 0.687 0.790 0.522 0.629 0.990 0.645 0.781
OMOMO 0.432 0.311 0.362 0.828 0.114 0.201 0.917 0.617 0.738 0.868 0.603 0.711 0.776 0.432 0.555 0.831 0.342 0.484 0.982 0.639 0.774

Methods
Smalltable Suitcase Trashcan Tripod Whitechair Woodchair Average

Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑ Cprec ↑ Crec ↑ F1 ↑

DAViDρ=0.00 0.926 0.482 0.634 0.990 0.564 0.718 0.961 0.508 0.665 0.714 0.195 0.306 0.706 0.213 0.328 0.913 0.328 0.483 0.848 0.389 0.524
DAViDρ=0.01 0.953 0.527 0.679 0.992 0.609 0.755 0.952 0.496 0.652 0.727 0.312 0.436 0.808 0.187 0.303 0.716 0.276 0.398 0.847 0.383 0.511
DAViDρ=0.02 0.915 0.691 0.788 0.979 0.609 0.751 0.916 0.628 0.745 0.731 0.247 0.369 0.825 0.609 0.701 0.779 0.495 0.605 0.850 0.517 0.634
DAViDρ=0.03 0.907 0.717 0.801 0.967 0.649 0.777 0.947 0.893 0.919 0.667 0.208 0.317 0.826 0.591 0.689 0.711 0.448 0.55 0.812 0.508 0.614
CHOIS 0.944 0.431 0.592 0.942 0.251 0.397 0.580 0.165 0.257 0.917 0.143 0.247 0.483 0.062 0.110 0.717 0.224 0.341 0.760 0.221 0.330

DAViDρ=0.00 0.936 0.457 0.614 0.989 0.420 0.590 0.970 0.561 0.711 0.839 0.173 0.287 1.00 0.255 0.407 0.922 0.371 0.529 0.891 0.350 0.490
DAViDρ=0.01 0.931 0.502 0.653 0.986 0.501 0.664 0.963 0.630 0.761 0.902 0.306 0.457 0.963 0.265 0.416 0.810 0.406 0.540 0.856 0.392 0.526
DAViDρ=0.02 0.920 0.639 0.755 0.976 0.536 0.692 0.957 0.760 0.847 0.949 0.347 0.508 1.00 0.378 0.548 0.865 0.490 0.618 0.867 0.488 0.616
DAViDρ=0.03 0.945 0.706 0.809 0.985 0.552 0.708 0.956 0.699 0.807 0.967 0.321 0.482 0.974 0.388 0.555 0.774 0.516 0.619 0.856 0.499 0.621
OMOMO 0.870 0.470 0.610 0.974 0.660 0.787 0.739 0.500 0.596 0.824 0.225 0.354 0.967 0.296 0.453 0.779 0.433 0.557 0.830 0.434 0.552

Table 1. Additional Quantitative Results. We report additional quantitative results for each category of the FullBodyManip dataset by
varying the contact loss threshold used in our TGS.

categories and instances. As shown in Fig. 7, our pipeline
allows to generate 4D HOI samples not only from 3D objects
in existing datasets, but also from those reconstructed from
in-the-wild images. For the given in-the-wild image, we first
reconstruct 3D objects from the image via TRELLIS [21],
using them as input to our pipeline to generate the 4D HOI
sample interacting with the object.

C. Limitations and Future Work
C.1. Spatial Bias on 2D HOI Image Generation

Due to the internal spatial bias of the pre-trained 2D diffu-
sion model, the model may fail to generate plausible images
when structural guidance is introduced in locations that do
not align with this bias, leading to collapse or hallucination.
For example, if an umbrella, which should be held by a hand,
is rendered at the bottom of the image and Canny edges [2]
are extracted from it to generate an image, the model may
create and use a new umbrella in a different location, rather
than in the rendered region. As a future direction, we can
consider a new form of conditional image generation that
is guided only by the structure of the given object, with-
out guidance on its location in the image. This approach is
expected to remove the human labor we used for filtering
malicious images.

C.2. Limits of Smoothness Guidance Sampling
Although our human-conditioned object pose diffusion

model is trained to generate plausible object pose during
interactions given a human pose, our smoothness guidance
sampling allows to generate plausible object motion for input
sequential human poses. In many cases, the assumption that
the object trajectory should be smooth while HOI is valid, but

in situations where the object vibrates within a small range
(e.g., when drilling a hole with an electric drill) collding
with other object, the assumption can be problematic. To
naturally model motions involving such collisions, physics
information is required, and understanding such physics
during HOI can be considered as potential future work.

C.3. Modeling Dexterous Hand-Object Interaction
Although we model the human with SMPL-X [16], and

recent 2D diffusion models demonstrate impressive quality
in representing detailed hands, the pre-trained video diffu-
sion model and 3D human estimator struggle to uplift the 2D
hand from HOI images to high-quality 4D. This hinders the
modeling of dexterous hand-object interactions in both our
4D HOI samples and the learned Dynamic Affordance. As a
future direction, we can explore separately learning the hand
patterns and merging them with the dynamic patterns we
learned, with the expectation of improving the hand quality
of the sampled HOI motion. As shown in Fig. 6, we show
that hand poses can be extended to our 4D HOI samples
using a hand pose estimator [17] in a simple scenario.

C.4. Concept Conflict
As we show that our LoRA [6] has an advantage for mod-

eling multiple concepts (e.g., combining existing knowledge
of pre-trained model, and combining the knowledge of two
individual LoRAs [6]), the concept conflict may appear when
combining two different concepts, similar to what occurs
in image diffusion models. When the two learned concepts
show totally different human motion patterns (e.g., lifting
a barbell, pushing a cart), we empirically observe that the
result converges into two cases: (1) a motion is interpolated
between two concepts, resulting implausible motion or (2)



Figure 6. Hand Pose Extension. DAVID uses SMPL-X as the hu-
man model, allowing hand pose extension in our 4D HOI samples.

Figure 7. Generalizability Across Input 3D Objects. Our 4D
HOI sample generation pipeline is generalizable to any input 3D
object, including those reconstructed from images.

one motion is performed followed by the other. Instead,
when the two concepts are reasonably similar (e.g., holding
an umbrella, riding a scooter), their motions can be combined
to generate multi-object interactions. However, we find that
the relatively less coherent patterns (e.g., the position of the
hand while riding a scooter) are removed while combining
the concepts, which is the limitation of our application.
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