Dual Recursive Feedback on Generation and Appearance Latents for
Pose-Robust Text-to-Image Diffusion

Supplementary Material

S1. Introduction

This supplementary material is intended to support the
main paper. We provide comprehensive ablation studies
that substantiate the chosen hyper-parameters and method-
ological decisions underpinning the Dual Recursive Feed-
back framework. Moreover, we report additional experi-
ments with complementary evaluation metrics that rigor-
ously quantify the contribution of each feedback mecha-
nisms.

S2. Ablation studies on DRF

Steps for DRF. To balance both efficiency and generated

image fidelity, we apply DRF during a subset of the total

inference steps (50 steps). We compare the scenarios of
applying DRF for 10 steps, 20 steps (ours), and all 50 steps,
with results summarized in Fig. S1.

* 10 steps: While inference time (36.09s) is reduced, cer-
tain structural details (e.g., the statue’s head orientation)
are not sufficiently captured.

e All 50 steps: It takes 135.07s but does not yield substan-
tially better outcomes than the 20 steps setting.

e 20 steps (Ours): Although slightly longer (56.87s), it
preserved fine-grained structure effectively.

Appearance

20 steps

Structure

10 steps

50 steps
|

:4 N X e B 75 _

“A photo of a statue on stones”
Figure S1. Ablation study on the number of steps. DRF is ap-
plied during intermediate 20 steps after the first five steps.

Number of DRF iterations. We investigate how many
times DRF should be invoked at each timestep within its
recurrence loop to maximize its impact. As illustrated in
Fig. S2, increasing the number of DRF applications at each
timestep more robustly transforms the appearance into the
intended structural form. This confirms that elevating the it-
eration count can further strengthen the alignment between
the structure and the generated image. Furthermore, we an-
alyze the cost of these gains by measuring time as a function
of the DREF iteration count, as summarized in Fig. S3. Infer-
ence latency grows almost linearly with additional feedback
passes, allowing practitioners to trade fidelity for speed by
selecting an iteration budget that fits their deployment con-
straints.
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Figure S2. Ablation study on the number of iterations for DRF.
The fusion of appearance and structure image is formed by itera-
tion number of DRF.
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Figure S3. DREF iteration cost. Inference time rises roughly
linearly with the number of DRF passes (blue), staying below
FreeControl and matching faster baselines at low iteration counts.

Hyper-parameters of DRF. We performed a parameter
sweep over A, p, and k to validate our chosen settings.
Across all three metrics, CLIP, Self-Sim, and DINO-I, each
hyper-parameter exhibits a clear, monotonic sweet spot
shown in Fig. S3). Increasing the update weight A mildly
affects CLIP and Self-Sim but raises DINO-I, peaking at
A=1.0. For the feedback balance p, smaller values favor
appearance consistency; p=0.001 delivers the lowest Self-
Sim and the highest DINO-I without degrading CLIP. Fi-
nally, the recursion depth K provides diminishing returns:
quality improves up to K =5 and plateaus thereafter, while
further iterations incur extra latency. Accordingly, we adopt
A, p, K =(1.0,,0.001,,5) in all subsequent experiments.

Figure S4. Hyper-parameters of DRF.



Weight for DRF loss. Building on the theoretical analysis
in Sec. 4, we empirically verify that amplifying the genera-
tion feedback term as the recursive feedback iteration index
1 grows is crucial for harmonising appearance and structure
features. Specifically, the exponential schedule of Eq. (10)
progressively shifts the optimisation focus from low-level
appearance injection in early iterations to high-level struc-
tural refinement in later ones. As shown in Fig. S5, this
strategy consistently yields sharper details and more faithful
pose alignment than linear or uniform weighting, confirm-
ing that a larger weight on generation feedback at higher
recursion depths is the most effective way to fuse appear-
ance and structural constraints in the final image.
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Figure S5. Comparison of weight method of DRF. Exponential
weight schedule determines the optimized weight for Generation
feedback.

S3. Additional Experiments

To more rigorously confirm that DRF preserves both ap-
pearance and structure, we add two complementary met-
rics. ArcFace [3] similarity quantifies identity retention
by measuring the cosine distance between face embed-
dings of the generated image and the appearance reference,
while SAM [13]-IoU assesses pose fidelity by comparing
structure-aware mask segmentations of the structure refer-
ence with those of each synthesis. As reported in Tab. S1,
DREF achieves the highest ArcFace similarity, demonstrat-
ing superior identity preservation alongside accurate pose
alignment. While DRF matches Ctrl-X in IoU, it delivers
superior overall image quality.

DRF Uni- ControlNet + T2I-Adapter +
(Ours) Curl-X FreeControl  CongrolNet  IP-Adapter  IP-Adapter

ArcFace | 0.6221  0.6497  0.7043  0.6961  0.7089  0.6469
IoUT  0.8048 0.8205 0.7984  0.6983  0.7498  0.4767
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Table S1. Additional experiments of DRF. DREF attains the low-
est ArcFace [3] (J) and strong SAM [13] (1), visibly fusing ap-
pearance and structure more faithfully than baseline models.
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