
A. Comparison with Existing Work

We provide a table comparing our work with previous image
editing studies in Tab. 2

B. Detailed Experimental Setup

Our experiment evaluates the effectiveness and efficiency of
our candidate selection method for image editing, focusing
on its ability to follow user instructions while maintaining
the source image’s visual fidelity.

Baselines. We establish 5 diffusion-based instruction-
guided image editing models as baselines. All models oper-
ate under a constrained setting where they take only the
source image and user instruction as inputs, without ac-
cess to ground-truth masks or source/target prompts. The
instruction-guided image editing models considered in this
work include InstructPix2Pix (IP2P) [1], MagicBrush [50],
InstructDiffusion (InsDiff) [9], MGIE [7], and UltraEdit [53].
Among them, UltraEdit is a fine-tuned model based on Stable
Diffusion 3, demonstrating that our method can also enhance
the performance of Rectified-Flow models effectively.

Since there is no existing method for seed selection in
image editing, we compare our approach, ELECT, with new
baseline ’Best of N by SBIS’ (hereafter referred to as Best
of N), which selects the best output via Background Incon-
sistency Score (BIS) after evaluating all generated samples.
This is equivalent to the ELECT algorithm when tstop = 0.
While Best of N compares outputs after running the full 100
denoising steps for each initial noise, our method selects the
best seed after evaluating only 40 denoising steps.

Benchmarks. We use two well-known benchmarks to
evaluate the image editing task. First, PIE-Bench [19] pro-
vides a test set covering 9 different editing scenarios and
includes data from both real and AI-generated image do-
mains, consisting of 700 images. Second, the MagicBrush
test set [50], consists of a manually-annotated dataset that
allows evaluation on real images and scenarios, containing
around 560 images. Each dataset provides a source image,
editing instruction, and foreground object mask, where the
mask is used only for metric evaluation.

Metrics. We evaluate image editing performance using
two key objectives: (1) Instruction Following and (2) Back-
ground Consistency. Instruction Following is measured with
CLIPScore [15], assessing semantic similarity between the
edited image and target caption in CLIP’s [35] embedding
space. For background consistency, we evaluate the visual
fidelity of the edited image relative to the source image us-
ing PSNR, MSE, SSIM [43], and LPIPS [51], leveraging
the dataset’s ground-truth mask. We also use VIEScore [22]
(0-10), which aligns with human preferences and combine
both objectives via MLLM-based evaluation. To gain a more
detailed perspective, we separately record the Instruction
Following score and Background Consistency score, which

constitute the Semantic Consistency (SC) score within VI-
EScore.

0 10 20 30 40 50
Denoising Steps

0.2

0.4

0.6

0.8

1.0

S_
t /

 
S_

m
ax

Stopping Step ( =0.05)
Stopping Step ( =0.1)
Stopping Step ( =0.2)

0 10 20 30 40 50
Denoising Steps

0.6

0.8

1.0

1.2

1.4

S_
t

Stopping Step ( =0.05)
Stopping Step ( =0.1)
Stopping Step ( =0.2)

(a) InstructPix2Pix

0 10 20 30 40 50
Denoising Steps

0.2

0.4

0.6

0.8

1.0

S_
t /

 
S_

m
ax

0 10 20 30 40 50
Denoising Steps

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

S_
t

(b) MagicBrush

0 10 20 30 40 50
Denoising Steps

0.2

0.4

0.6

0.8

1.0

S_
t /

 
S_

m
ax

0 10 20 30 40 50
Denoising Steps

1.5

1.6

1.7

1.8

1.9

2.0

S_
t

(c) InstructDiffusion

0 10 20 30 40 50
Denoising Steps

0.2

0.4

0.6

0.8

1.0

S_
t /

 
S_

m
ax

0 10 20 30 40 50
Denoising Steps

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

S_
t

(d) MGIE
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Figure 10. Experimental motivation and implementation of the di-
minishing delta criterion, which halts the denoising process once the
delta score falls below a threshold defined as τ ·∆Smax. The graphs
illustrate the evolution of the score and delta score over timesteps,
with convergence behavior observed for small τ . A moving average
over 5 timesteps is applied to enhance robustness against noise.



Table 2. Comparison of Methods Addressing Background Inconsistency in Text-guided Image Editing. Our method is the first to
introduce optimal seed selection for instruction-guided editing and uniquely enables MLLM-based instruction prompt selection, which
is absent in existing approaches. Unlike prior methods, our ELECT framework achieves these capabilities without requiring external
segmentation models or source/target prompt pairs.

Ours WYS [31] ZONE [25] MagicBrush [50] UltraEdit [53] DirectInversion [19] InfEdit [46] NTI [32], PTI [5]
Optimal Seed Selection ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Optimal Prompt Selection/Tuning ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Training-free ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓
Does not require source/target prompts ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Does not require external segmentation model ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

C. Additional Analysis
C.1. Motivation Validation
We ranked each sample’s seed outputs by background
MSE—treating the background as the preserved region—and
found that lower background MSE strongly correlates with
higher edit quality and better instruction following. Fig. 11a
quantifies this relationship, while a complementary user
study in Fig. 11b further corroborates it. In that study, 34
participants evaluated 52 high-variance, category-balanced
PIE-Bench samples, each presenting ten outputs (seeds 1–10)
produced by IP2P, InsDiff, or UltraEdit. Participants tagged
each image as well- or poorly-edited, and we defined user
preference as the difference between positive and negative re-
sponses for each rank. Inter-rater agreement was substantial
(Krippendorff’s α=0.7535), underscoring the reliability of
the findings. Moreover, Fig. 2 shows clear performance gains
as background MSE decreases, confirming that background-
consistent edits inherently yield superior results.
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Figure 11. (a) Higher background consistency (lower BG-MSE
rank) correlates with higher CLIPScore and VIEScore across mod-
els. (b) User Study: User preference strongly correlates with back-
ground consistency (Pearson r = 0.534), confirming perceptual
alignment.

C.2. Analysis of Timestep for Selection
We summarized our considerations regarding tstop in Section
5.4. Empirically, we observed that when tstop = 60, perfor-
mance improvement began to converge across all models. In
practice, stopping at this timestep resulted in balanced per-
formance and efficiency gains. However, as shown in Fig. 13,
for some models, tstop = 60 is not the optimal stopping step.

For instance, in the cases of IP2P and InsDiff, perfor-
mance continues to converge sufficiently even at tstop = 70.
By stopping at this point and performing selection, we can

obtain output with fewer NFE while maintaining similar
performance. We also identified a significant correlation
between the convergence point of performance and the con-
vergence point of changes in SBIS, as shown in Fig. 10.

This phenomenon can be explained by the denoising pro-
cess in image generation. In the early timesteps, images are
heavily noisy, making it difficult to extract clean outputs that
closely resemble the final result. However, beyond a certain
point, the noise level decreases, and the model focuses on
fine-grained details, leading to a stage where score variations
become less significant.

Based on this observation, we argue that this specific point
is where ranking the outputs produces minimal differences.
Accordingly, we propose a criterion for determining a model-
and sample-agnostic stopping step, which can be utilized for
optimizing the selection process effectively.

Using a representative score  S_t = \min _{i\in S} S^{\text {BIS}}(i,t)      and
its change  \Delta S_t = |S_t - S_{t-1}|     , DDC stops denoising when
the relative change  \Delta S_t / \Delta S_{\max }  falls below a threshold  \tau .
With  \tau = 0.1  , UltraEdit converges at  t_{\text {stop}} = 60   , while other
models converge near  t_{\text {stop}} = 70   , maintaining performance
in fewer steps for some models (Fig. 10). In a 100-step pro-
cess, heuristically setting tstop = 60 works broadly, though
earlier stops (e.g., 70 or 80) suffice for some models without
significant degradation.

We further examine how the benefits of ELECT scale
with the number of candidate seeds N . As shown in Fig. 12,
the marginal performance improvements steadily taper off
as N grows, yet they remain consistently positive relative
to the fixed-seed baseline. This figure extends the saturation
trend observed in Fig. 7 to a broader range of N values, con-
firming that larger candidate pools yield diminishing—but
still meaningful—returns.
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Figure 12. Performance trend in Fig. 7 when N=25, 50, 100.
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Figure 13. ELECT performance variation with respect to stopping timestep (tstop) with fixed number of seeds.

C.3. Analysis of Mask Extraction
In prior work [31], relevance maps were extracted and sub-
sequently binarized using a threshold before being utilized.
However, we observed that the optimal threshold value varies
across samples. Applying a fixed threshold for binariza-
tion often results in inaccurate mask extraction for certain
samples, which in turn hinders the accurate computation of
scores. Recognizing this limitation, we propose an approach
that avoids hyperparameter tuning and instead leverages the
continuous-valued mask directly to compute scores for re-
gions outside the area of interest. As demonstrated in Fig. 14,
threshold-based methods exhibit a variety of failure cases
depending on the chosen threshold. In contrast, our contin-
uous mask assigns relatively higher real-valued scores to
regions most relevant to editing. Consequently, when apply-
ing pixel-wise weighting, our method effectively penalizes
background inconsistencies, offering a more robust solution.

To enhance this approach, we squared the mask values,
which sharpens the distinction of regions outside the area
of interest. This additional step amplifies the penalty on
irrelevant areas, enabling a sample-robust application of the
mask without the need for threshold adjustments.

Binary Mask Continuous Mask

“Remove the
balls from the

kitten's
playtime”

“Replace the
cat with a

bear”

Source Image Instruction

Figure 14. We further identified that the suitability of binary masks,
derived from applying a threshold, varies significantly across sam-
ples. In contrast, the continuous mask consistently extracts stable
regions of interest, as validated through our experiments.

C.4. Analysis for Global Edits.
In global edits, ELECT selects seeds that better preserve
the structural integrity of the source image while apply-
ing the intended style change. This benefit is evident in
the mean relevance map M_t^{\text {mean}}

 , which emphasizes broad,
image-wide coherence rather than localized focus regions
(see Figs. 3 and 15). On PIE-Bench’s style transfer task,
ELECT (N\!=\!10  ) consistently outperforms fixed-seed
baselines—reducing MSE and increasing SSIM for IP2P
(\delimiter "3223379 26\%\,/\,\uparrow 3.4\text { pt}     ), MagicBrush (\delimiter "3223379 25\%\,/\,\uparrow 6.6\text { pt}     ), and
UltraEdit (\delimiter "3223379 19\%\,/\,\uparrow 4.2\text { pt}     ). It also improves semantic met-
rics, boosting CLIPScore by +0.01\text {â•fi}0.83 pt and VIEScore
by +0.11\text {â•fi}0.46 pt across all models.

"Change the
anime painting to

a kids crayon
drawing"

"Add a pen and
ink sketch effect"

Best Seed by ELECT Bad Seeds

Figure 15. Qualitative results of global editing with ELECT.

C.5. Failure Cases.
Although ELECT can occasionally select edits that are
overly mild—preserving too much of the background and
dampening the intended change (see Fig. 16)—we observed
that such instances were relatively uncommon in our exper-
iments. This rarity likely stems from the strong modifica-
tion bias of many instruction-guided image-editing models,
which tends to push outputs toward more pronounced al-
terations, making excessive, unintended changes the more
prevalent concern in practice.

"Change the
color of the apple

from yellow to
red"

ELECT w/

Figure 16. A failure case of ELECT.



C.6. Another Signal for ELECT.
We also evaluated two alternative early-step cues for
ELECT: foreground MSE (FG MSE) and CLIP-based
text–image alignment. As illustrated in Fig. 17, both al-
ternatives actually reduced performance—CLIP struggles
with highly noisy early-timestep latents, and selecting the
seed with the highest FG MSE often drives excessive fore-
ground changes, yielding over-edited images. A simple hy-
brid rule mitigates these issues: we choose between the seed
with the lowest BG MSE and the one with the highest FG
MSE, whichever produces the better preliminary score. This
strategy (yellow bars) enhances robustness, rescuing fail-
ure cases where pure background consistency alone falters
(see Fig. 16). These observations highlight the opportunity
to combine our pixel-wise background metric with com-
plementary cues—such as foreground change or structural
similarity—to support a more reliable, multi-aspect selection
process. Realizing such a multi-objective framework will
require deeper analysis, which we regard as a promising
direction for future work.
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Figure 17. Comparison with various signals for ELECT.

D. Extending Relevance Maps to Rectified Flow
Rectified Flow [27] models such as Stable Diffusion 3 [6]
offer an alternative approach to modeling the noise-to-data
transformation. The transformation is represented as an or-
dinary differential equation over a continuous time interval
t ∈ [0, 1]:

  dz_t=v(z_t,t)dt     (9)

where z0 ∼ π0 is initialized from the source (noise) distri-
bution and z1 ∼ π1 is generated at the end of the trajectory.
The drift v is fit to approximate the linear direction z1 − z0:

  v_\theta (z_t,t)\simeq z_1-z_0       (10)

Rectified flow models can also predict the denoised latent
from timestep t via

  \hat {z}_0=z_t-v_\theta (z_t,t,I,C_T)\cdot t            (11)

which corresponds to Tweedie’s formula for diffusion mod-
els.

E. ELECT for Instruction Prompt Selection

Algorithm 2 ELECT(S, tstop,MLLM) = x∗

Require: Source image I , edit instruction CT , candidate
seed set S, stopping timestep tstop, instruction-guided
denoiser ϵθ, VAE encoder E and decoder D, MLLM
Mϕ

Ensure: Best edited image x∗

1: x0 ← ELECT(S, tstop) \triangleright Algorithm 1
2: ifMϕ(I, CT , x

0,"evaluate x0") > 0 then
3: return x∗ ← x0 \triangleright Exit on edit success
4: end if
5: Sample a single initial noise zT ∼ N (0, I)
6: z1T = · · · = zNT ← zT
7: {Ci}Ni=1 ←Mϕ(I, CT ,"generate N prompts")
8: for t = T → tstop + 1 do \triangleright Denoise until stopping time
9: for i← 1, 2, . . . , N do

10: zit−1 ← Denoise(zit, t, I, Ci)
11: end for
12: end for
13: for i← 1, 2, . . . , N do
14: SBIS(i, tstop)← SBIS(i, tstop | [N ], ϵθ, I, Ci)
15: end for
16: i∗ ← argmini∈[N ] S

BIS(i, tstop) \triangleright Select best prompt
17: for t = tstop → 1 do \triangleright Continue denoising i∗

18: zi
∗

t−1 ← Denoise(zi
∗

t , t, I, Ci∗)
19: end for
20: return x∗ ← D(zi∗0 ) \triangleright Final edited image

MLLM-Based Evaluation Metric. To assess the success
of image edits, we introduce an MLLM-based evaluation
metric inspired by VIEScore [22] and ImagenHub [21].
While VIEScore provides a continuous score (0–10) for
various aspects of an image, it lacks a definitive threshold for
determining success. To address this, we adopt a discretized
classification similar to ImagenHub, categorizing edits into
three levels:

1.0 (Success) The edit fully satisfies the given instruction
while maintaining background consistency.

0.5 (Partial Success) The edit captures part of the instruc-
tion’s intent but introduces inconsistencies or artifacts.

0.0 (Failure) The edit either does not follow the instruction
or severely distorts the original image.

Following VIEScore’s semantic consistency evaluation, we
separately assesstwo key aspects:
1. Instruction Following: Measures how well the edit

aligns with the given prompt.
2. Background Consistency: Ensures that unedited regions

of the image remain unchanged.
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Figure 18. ELECT extends to prompt selection by incorporating MLLMs, improving editing reliability when seed selection alone is
insufficient.

If either metric scores 0.0, the edit is classified as a fail-
ure, triggering the prompt selection process. We provide the
useful prompt used for MLLM evaluation:

"""
RULES:

Two images will be provided: The first
being the original image and the
second being an edited version of the
first.

↪→

↪→

↪→

The objective is to evaluate how
successfully the editing instruction
has been executed in the second image.
Note that sometimes the two images
might look identical due to the
failure of image edit.

↪→

↪→

↪→

↪→

↪→

To standardize the conduction of a
rigorous human evaluation, we
stipulate the criteria for each
measurement as follows:

↪→

↪→

↪→

Instruction Following (IF), score in range
[0, 0.5, 1]↪→

Background Consistency (BC), score in
range [0, 0.5, 1]↪→

Instruction Following (IF) ensures that
the generated image accurately follows
the given editing instruction. In
other words, the image has to be
aligned with the requirements provided
in user's inputs.

↪→

↪→

↪→

↪→

↪→

Background Consistency (BC) ensures that
only the specified editing regions are
modified, while unedited regions
remain visually consistent with the
original input image. This measures
whether the image maintains fidelity
in areas not targeted for editing.

↪→

↪→

↪→

↪→

↪→

↪→

General Rules for Instruction Following
(IF) scoring:↪→

IF=0: The scene in the edited image does
not follow the editing instruction at
all. IF=0.5: The scene in the edited
image partially follows the editing
instruction. IF=1: The scene in the
edited image follows more than 75% of
the editing instruction, aligning well
with the intended changes. You agree
that the overall idea is correct.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

General Rules for Background Consistency
(BC) scoring:↪→

BC=0: Unedited regions are heavily altered,
showing significant changes unrelated
to the prompt or intended editing task.
BC=0.5: Unedited regions are partly
preserved, but some visible
alterations or inconsistencies exist
in areas that should remain unchanged.
BC=1: Unedited regions are
well-preserved, with no noticeable
alterations or inconsistencies
compared to the original input image.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Scoring Criteria:
Each metric (IF, BC) is independently

scored, and the final evaluation is
based on the aggregate results. High
scores in all metrics indicate that
the generated image successfully
aligns with the prompt, maintains
photorealism, and preserves the
integrity of unedited regions.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Return your evaluation in the following
JSON format:↪→

{{
"IF": <IF score>,
"BC": <BC score>

}}
"""



Prompt Selection via MLLM. For failed cases, we intro-
duce an additional step where an MLLM generates alterna-
tive instruction prompts (Fig. 18). Given the input image and
the original prompt, the MLLM is instructed to produce se-
mantically equivalent but lexically varied instructions. To en-
sure diversity, we explicitly include constraints in the prompt,
encouraging variations in wording, phrasing, and structure
without altering the intended meaning.

This iterative process improves the likelihood of finding a
prompt that falls within the model’s learned distribution, ul-
timately increasing the success rate of edits. The instruction
generation prompt are provided below:

"""
You are an AI that generates editing

instruction variants for text-guided
image editing. Each variant should
rephrase the editing instruction in a
different way while strictly
maintaining the original intent.
Follow the given guidelines:

↪→

↪→

↪→

↪→

↪→

↪→

The input consists of:
1. A source image, which serves as the

context for the editing instruction.↪→

2. An editing instruction, describing the
intended change to be made to the
source image.

↪→

↪→

Your task is to create 10 diverse
rephrasings of the editing instruction
while preserving its original meaning.

↪→

↪→

### Guidelines:
1. The first variant should duplicate the

given editing instruction exactly.↪→

2. Subsequent variants should rephrase the
instruction using different vocabulary,
sentence structures, or expressions.

↪→

↪→

3. Ensure that all variants remain
consistent with the source image and
convey the same intent as the original
instruction.

↪→

↪→

↪→

4. Avoid adding unnecessary complexity or
details. Focus on concise and clear
instructions.

↪→

↪→

5. Each instruction should be under 15
words and easy to understand.↪→

### Input Example:
Source Image: (an image of a cat on a

table)↪→

Editing Instruction: "replace the cat with
a dog"↪→

### Output JSON Format:
{{

"variants": [
"replace the cat with a dog",
"swap the cat for a dog",
"make the cat a dog instead",
...
"exchange the cat for a dog"

]
}}

### Note:
Ensure that all rephrasings align with the

intent of the editing instruction
while being consistent with the source
image.

↪→

↪→

↪→

###Input:
Editing Instruction: {}
"""

Quantitative Results. We evaluated PIE-bench data based
on Background Consistency (BC) and Instruction Following
(IF), categorizing each as 0, 0.5, or 1.0. Total number of data
is 700 in PIE-bench. A case was considered a failure if either
score was 0. We set the number of seeds to N = 10 for
ELECT and applied prompt selection only to the remaining
failed cases after seed selection, with N = 10 prompts for
re-selection. As a result, the editing failure rate significantly
decreased, successfully correcting approximately 40% of
previously failed baseline cases. (Tab. 3) Furthermore, we
present the results of a comprehensive comparative evalua-
tion of seed/prompt selection techniques across the whole
metrics. (Tab. 4)

Failure Ratio

Vanilla
ELECT

(seed selection)
ELECT

(prompt selection)
Failure to Success

Ratio
InstructPix2Pix 45.14% 40.00% 28.57% 36.71%

MagicBrush 31.43% 26.71% 16.57% 47.27%
InstructDiffusion 41.29% 34.29% 22.29% 46.02%

MGIE 34.86% 33.00% 21.57% 38.11%
UltraEdit 26.71% 23.43% 17.00% 36.36%

Table 3. Failure case analysis using the MLLM[34] evaluator.

F. Additional qualitative results
We provide various qualitative results for PIE-bench[19]
(Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23) and
MagicBrush[50] (Fig. 24). Starting from the next image,
the selected candidates using ELECT (N = 10) are placed
on the far left, and the sorted qualitative results, where the
score increases (background inconsistency rises) towards the
right, are shown. In addition, Fig. 25 illustrates cases where
initial seed selection (N = 10) failed but were successfully
handled by prompt selection (N = 10). In all qualitative
results, the scores shown below each image correspond to
SBIS .



Table 4. Comparison of prompt selection after seed selection and failed cases for ELECT seed selection. The experiment was conducted
with N=20 to ensure a fair comparison.Although selecting prompts after evaluating a larger number of seeds yields lower performance
in terms of Background Consistency (BC), this does not necessarily translate to improved editing outcomes. As illustrated in Fig. 5, the
performance tends to saturate, introducing a risk of over-optimization that may not lead to meaningfully better edits. In contrast, when
prompt selection is performed after evaluating only 10 seeds and determining their failure, we observe improved performance in terms of
Instruction Following. Notably, a significant increase in performance is evident when assessed using the VIEScore metric, which is known
for its strong alignment with human judgment. This suggests that, for tasks that the model struggles to address under the initial prompt
conditions, introducing an alternative signal enables a broader and more effective search for outputs closer to success.

Model Seed Selection
Method

BC IF VIEScore (Semantic Consistency) (↑)
MSE×104 (↓) LPIPS×103 (↓) PSNR (↑) SSIM×102 (↑) CLIP-T (↑) BC IF min(BC, IF)

IP2P

Vanilla 248.49 162.41 20.73 75.98 24.38 6.02 4.15 3.43
ELECT (seed N = 10) 128.80 104.25 23.28 80.86 24.93 6.80 4.27 3.68
ELECT (seed N = 20) 115.97 98.27 23.62 81.41 24.95 6.97 4.33 3.60

ELECT (seed to prompt N = 20) 127.18 100.91 23.48 81.18 25.05 6.85 4.65 3.92

MagicBrush

Vanilla 139.18 77.22 24.83 82.84 24.63 5.89 4.70 3.99
ELECT (seed N = 10) 75.75 59.57 26.12 84.63 24.98 6.27 4.90 4.25
ELECT (seed N = 20) 72.15 57.50 26.28 84.86 25.03 6.33 4.99 4.33

ELECT (seed to prompt N = 20) 78.33 58.63 26.12 84.68 25.15 6.55 5.30 4.58

InsDiff

Vanilla 372.46 154.04 20.25 75.53 24.09 5.42 4.18 3.53
ELECT (seed N = 10) 179.64 103.91 22.89 80.09 24.71 5.87 4.54 3.82
ELECT (seed N = 20) 165.79 103.05 23.03 80.23 24.87 5.87 4.62 3.86

ELECT (seed to prompt N = 20) 191.25 103.92 22.78 80.06 24.97 6.16 5.05 4.28

MGIE

Vanilla 341.42 145.51 21.16 77.31 24.44 5.64 4.41 3.68
ELECT (seed N = 10) 187.40 103.61 23.54 81.27 24.68 6.27 4.55 3.93
ELECT (seed N = 20) 176.79 98.24 23.83 81.73 24.81 6.30 4.52 3.91

ELECT (seed to prompt N = 20) 137.01 88.40 24.22 82.59 25.10 6.55 4.88 4.21

UltraEdit

Vanilla 87.54 115.37 22.93 79.86 25.20 5.89 5.50 4.47
ELECT (seed N = 10) 64.20 93.15 24.46 83.56 25.37 6.37 5.63 4.71
ELECT (seed N = 20) 60.28 89.53 24.76 84.07 25.51 6.47 5.62 4.77

ELECT (seed to prompt N = 20) 70.17 99.18 23.90 82.54 25.26 6.24 5.95 4.90
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Figure 19. Qualitative Result for Seed Selection (dataset: PIE-bench [19], model: InstructPix2Pix [1]).
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Figure 20. Qualitative Result for Seed Selection (dataset: PIE-bench [19], model: MagicBrush [50]).
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Figure 21. Qualitative Result for Seed Selection (dataset: PIE-bench [19], model: InstructDiffusion [9]).
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Figure 22. Qualitative Result for Seed Selection (dataset: PIE-bench [19], model: MGIE [7]).
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Figure 23. Qualitative Result for Seed Selection (dataset: PIE-bench [19], model: UltraEdit [53]).



Background Inconsistency Score (BIS)

 

“let the woman
wear a party

gown”

Source Image Instruction

(more background artifact)

(↑) 

 (less background artifact)

(↓) 

“What if there
was a tennis ball

in the glove?”

Best Selected

“let the red bowl
contain dessert”

“change the
fruit bowl to a
salad bowl”

“replace the cap
with a cowboy

hat”

“Remove the
computer”

“replace the
lime green to

red cup”

“Replace the
graffiti with the
face of a panda”

“Could it be a
glass of wine on

the table?”

“Add a glass of
milk”

Figure 24. Qualitative Result for Seed Selection (dataset: MagicBrush [50]). From top to bottom, each model’s results — InstructPix2Pix
[1], MagicBrush [50], InstructDiffusion [9], MGIE [7], and UltraEdit [53] — are displayed in order, with two rows per model.
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Figure 25. Qualitative Result for Prompt Selection (dataset: PIE-bench [19]). MLLM-generated instruction variants refine failed edits to
enhance overall editing outcomes.
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