
Supplementary Material for
Exploiting Diffusion Prior for Task-driven Image Restoration

Jaeha Kim1 Junghun Oh1 Kyoung Mu Lee1,2
1Dept. of ECE&ASRI, 2IPAI, Seoul National University, Korea

jhkim97s2@gmail.com, {dh6dh, kyoungmu}@snu.ac.kr

In this supplementary document, we show the additional
details, results, and ablation studies omitted from the main
manuscript due to the lack of space:
• S1. Degradation details
• S2. Training details
• S3. Impact of pre-restoration network
• S4. Training algorithm
• S5. Benefit of using two feature spaces in HLF
• S6. Computational cost of the EDTR
• S7. Output stochasticity of the EDTR
• S8. Comparison with DiffBIR for detection
• S9. SR4IR combined with SD
• S10. Details for the previous works
• S11. Additional ablation studies
• S12. Further visualization results

S1. Degradation details
We provide the detailed image degradation settings used in
our main experiments (Table 1 of our main manuscript).
• Mixture-A: Bilinear downsampling with a scale factor

of ×8 is applied, followed by JPEG compression with a
quality factor of 75.

• Mixture-B: The Gaussian blur, bilinear downsampling,
Gaussian noise, and JPEG compression are sequentially
applied. Gaussian blur kernel size, downsampling ra-
tio, Gaussian noise standard deviation, and JPEG quality
factor are randomly selected within the ranges [0.1, 8.0],
[1, 16], [0, 10], and [50, 100], respectively.

Note that after applying degradation, all degraded images
are resized back to their original resolution using bilinear
interpolation to match the size of high-quality images, fol-
lowing the CodeFormer [68].

S2. Training details
The EDTR and high-level vision task networks are opti-
mized over 10k iterations using the AdamW [69] and SGD
optimizers, respectively. The learning rates are set to 10−4

for EDTR and 5× 10−3 for the task network, with a cosine
annealing [70] schedule. For each degraded dataset, the pre-
restoration network (i.e., SwinIR [27]) is trained with the

same number of iterations using the AdamW optimizer and
a learning rate of 10−4. The training batch size is 32 for im-
age classification and 16 for other tasks. The image resolu-
tion is fixed at 512×512 for all tasks. If an image is smaller
than 512 × 512, we pad it to meet the resolution and then
crop it back to its original size. We calculate the HLF loss
using the output of the feature extractor for each task net-
work, e.g., for image classification, the feature directly pre-
ceding the final fully connected layer in ResNet [15]. When
computing the training loss for the task network in Equa-
tion (10), the balancing hyper-parameter α is set to 1 for
classification, 0.5 for segmentation, and 0.2 for detection.
The task loss is defined as cross-entropy loss for classifica-
tion and segmentation, and as a combination of classifica-
tion, Region-of-Interest regression, objectness, and Region
Proposal Network box regression losses for detection.

S3. Impact of pre-restoration network
Table S1 presents the performance of EDTR-1 step along
with various pre-restoration (i.e., pixel-error) networks.
We observe that a more powerful pre-restoration network,
which achieves a higher pre-restoration PSNR, leads to bet-
ter high-level vision task performance. These results sup-
port our claim that removing degradation artifacts as much
as possible before applying the diffusion prior is crucial for
effectively harnessing the power of the diffusion prior in the
TDIR, as discussed in Section 3.2. In addition, this result
also indicates that developing a classical IR model aimed at
achieving higher PSNR is also relevant to the TDIR.

Pre-restoration network EDSR [28] RRDBNet [53] SwinIR (Used)
Acc↑ / Pre-restoration PSNR↑ 66.8 / 24.45 67.3 / 24.59 68.8 / 25.04

Table S1. Impact of pre-restoration network in classification.

S4. Training algorithm
Algorithm S1 presents the detailed training procedure for
jointly training EDTR and task network H, which are in-
troduced in Section 3.2 and 3.3. Note that EDTR and task
network are trained alternately, i.e., in one training iteration,
EDTR is trained first, followed by an update to theH.

1



Algorithm S1 Training algorithm for jointly training EDTR and the task networkH
Input: Trainable parameter θEDTR for EDTR, θH for task network H, pre-restoration network Rpix, denoising network

combined with ControlNet ϵθ, VAE encoder E and decoder D, set of HQ patches IHQ, image degradation model Deg ,
timestep for partial diffusion tp, number of denoising steps n, variance schedule of Gaussian noise βt ∈ (0, 1), high- and
low-frequency wavelet components H and L, total training iterations N , learning rates ηEDTR and ηH

1: q(zt|zt−1) := N (
√
1− βt zt−1, βt I), αt = 1− βt, ᾱt =

∏t
i=1 αi, ϵ ∼ N (0, I)

2: T = [tp, ⌊ tp·(n−1)
n ⌋, ..., ⌊ tpn ⌋] // Used n timesteps for EDTR

3: for i = 1 : N do
4: IHQ ∼ IHQ, ILQ = Deg(IHQ) // Sample HQ images and generate LQ images
5: zpre-res = E(Rpix(ILQ)) // Pre-restoration and encoding
6: # Training EDTR
7: t ∼ Uniform(T ) // Sample timestep t
8: zt,partial = q(zt|z0 = zpre-res) // Partial diffusion with timestep t, Equation (4)
9: zdiff-res = (zt,partial −

√
1− ᾱtϵθ(zt,partial, t, zpre-res))/

√
ᾱt // One-step denoising

10: IEDTR,train = H(D(zdiff-res)) + L(Rpix(ILQ)) // RGB image decoding with color correction, Equation (6)
11: θEDTR ← θEDTR − η EDTR∇θEDTRLHLF // Update θEDTR using HLF loss, Equation (7)
12: # Training task network
13: ztp,partial = q(ztp |z0 = zpre-res) // Partial diffusion with timestep tp, Equation (4)
14: # n-step denoising, we set n to a small value for short-step (e.g., 1, 4)
15: for j = 0 : (n− 1) do
16: zdiff-res = (zT [j],partial −

√
1− ᾱT [j]ϵθ(zT [j],partial, T [j], zpre-res))/

√
ᾱT [j] // One-step denoising

17: if j ̸= (n− 1) then
18: zT [j+1],partial = q(zT [j+1]|zT [j], z0 = zdiff-res) // Adding noise
19: end if
20: end for
21: IEDTR = H(D(zdiff-res)) + L(Rpix(ILQ)) // RGB image decoding with color correction, Equation (6)
22: θH ← θH − ηH∇θH(Ltask + αLFM) // Update θH using task loss and FM loss, Equations (8) and (9)
23: end for

S5. Benefit of using two feature spaces in HLF
We propose the HLF loss, which calculates the distance in
the feature space of two task networks, effectively guid-
ing the diffusion prior to restore task-relevant details. To
evaluate the effectiveness of using the feature space from
both task networks, we compare the performance of EDTR
trained with the loss for each single task network. Specifi-
cally, we compare two cases: using onlyHf and using only
Hf

HQ, in the original HLF loss (Equation (7)). Note that
using only Hf is the same configuration (i.e., TDP loss)
proposed in the previous TDIR method SR4IR [20].

Table S2 presents the performance of EDTR under dif-
ferent training loss settings. The EDTR model trained with
our HLF loss achieves the best performance in both task ac-
curacy and visual quality. We claim that this is because the
HLF loss extracts complementary information from both
task networks, leading to improved performance compared
to using a single task network. Figure S1 further validates
our claim by visualizing the feature spaces of two task net-
works, Hf and Hf

HQ. Specifically, we use the t-SNE [71]
method for feature space visualization. Although the two
feature spaces exhibit notable similarity due to the feature

Training loss Hf Hf
HQ

Acc↑ (%) Q-Align↑

Only Hf ✓ ✗ 67.8 3.36
Only Hf

HQ ✗ ✓ 68.0 3.26
HLF (Ours) ✓ ✓ 68.8 3.48

Table S2. EDTR performance on classification with different
training losses. The EDTR-1 step model is used.

(a) Hf (b) Hf
HQ

Figure S1. t-SNE visualizations of the feature space. The feature
spaces are from ResNet for classification. Each color of the point
represents a classification label.

matching loss, apparent differences exist between the two
feature spaces. For example, as highlighted in the yellow
box in Figure S1, the relationship between the red and blue

2



point groups differs in Hf and Hf
HQ. This suggests that

incorporating two feature spaces in HLF loss can provide
complementary information for the TDIR, leading to im-
proved performance.

S6. Computational cost of the EDTR
Table S3 presents the computational cost of our EDTR. The
throughput and VRAM usage are measured on 512×512
resolution images using a single NVIDIA RTX A6000 GPU
and an Intel Xeon Gold 6226R CPU. Notably, despite incor-
porating the large SD, EDTR achieves reasonable through-
puts of 3.79 and 2.23 img/s for 1-step and 4-step settings,
respectively, owing to its efficient short-step denoising.

IR methods
Throughput # of parameters VRAM usage

(img/s) (B) (MB)
DiffBIR [30] (50 step) 0.31 1.683 (0.363 + 1.320) 9310
EDTR-1 step (Ours) 3.79 1.683 (0.413 + 1.270) 9310
EDTR-4 step (Ours) 2.23 1.683 (0.413 + 1.270) 9310

Table S3. Computational cost of the EDTR. The gray number
represents the frozen parameters in SwinIR and SD. EDTR has
more trainable parameters due to its trainable VAE decoder.

S7. Output stochasticity of the EDTR
The outputs of EDTR exhibit stochasticity during inference
due to the random noise ϵ in the partial diffusion process,
as described in Equation (4). Table S4 presents the average
and standard deviation of the EDTR output metrics. While
the performance of high-level vision tasks shows some vari-
ability, image quality metrics remain highly consistent, with
a standard deviation of less than 0.002. Therefore, we report
image quality metrics from a single inference while averag-
ing the results of four inferences to ensure reliability when
evaluating the task performance.

Methods Acc↑ (%) NIQE↓ Q-Align↑ PSNR↑
EDTR-1 step (Ours) 68.8 / 0.249 4.75/ 0.002 3.48/ 0.002 23.03 / 0.001

Table S4. Output stochasticity of EDTR-1 step. We report the
average / standard deviation over 10 inference runs for each metric
on the image classification task under Mixture-B degradation.

S8. Comparison with DiffBIR for detection
Table S5 compares EDTR with the conventional SD-based
IR method (i.e., DiffBIR [30], Exp-(1) setting in Table 2 of
our main manuscript) for object detection. Figure S2 illus-
trates that, although the conventional SD-based IR method
restores the image in a visually pleasing manner, its genera-
tive prior can produce undesirable patterns, leading to mis-
detection results. For example, the area highlighted in the
yellow box in Figure S2 is part of a sofa, but the conven-
tional SD-based IR method restores it to resemble a book-
shelf, resulting in a failure to detect the sofa. These results
further validate that the diffusion prior must be carefully
managed to effectively restore task-relevant details.

Methods mAP↑ (%) Q-Align↑
Conventional SD-based IR method [30] 25.9 3.87
EDTR-1 step (Ours) 30.6 3.64
EDTR-4 step (Ours) 31.9 4.02

Table S5. Performance comparison for detection (Mixture-B).

(a) LQ (No restoration) (b) DiffBIR [30]

(c) EDTR (Ours) (d) HQ (Oracle)
Figure S2. Comparison between EDTR-4 step and conven-
tional SD-based IR method on object detection.

S9. SR4IR combined with SD

Table S6 presents the results of directly incorporating SD
into the previous state-of-the-art TDIR method, SR4IR [20],
with the results visualized in Figure 1c. Note that this ap-
proach differs from Exp-(2) in Table 2, including the use of
FM loss and other techniques (e.g., TDP and CQMix, which
were introduced in SR4IR). Despite the incorporation of a
strong diffusion prior, it performs even worse than the orig-
inal SR4IR. These results further highlight that even with a
strong diffusion prior, effectively handling it to restore task-
relevant details is a crucial challenge.

Methods Acc↑ (%) NIQE↓ Q-Align↑ PSNR↑
SR4IR [20] 63.4 6.08 3.11 23.62
SR4IR [20] + SD [41] 57.6 6.01 2.35 16.92
EDTR-1 step (Ours) 68.8 4.75 3.48 23.03

Table S6. Performance of the SR4IR combined with SD.

3



S10. Details for the previous works

TDSR. Since the official code for TDSR [14] is not avail-
able, we re-implemented it ourselves. We use TDSR-0.01,
which employs a pixel loss ratio of 1.0 and a task loss ra-
tio of 0.01. Unlike the original TDSR, which is limited to
object detection, we extend it to image classification and
semantic segmentation, utilizing the respective high-level
vision task losses, e.g., cross-entropy loss for image classi-
fication. We adopt SwinIR [27] as the restoration model.

RSRSSN. Since the official code for RSRSSN [67] is not
available, we re-implemented it ourselves. Following the
paper, we train the restoration model and task network in
an end-to-end manner using feature map multi-box loss and
task loss, with respective weight ratios of 0.1 and 1.0. As
with our re-implementation of TDSR, we extend RSRSSN
to include image classification and semantic segmentation.
We additionally incorporate pixel loss during training, as
we observed significantly degraded image quality without
it. We use SwinIR as the restoration model.

SR4IR. We use the official code from SR4IR [20] to ob-
tain the results. SwinIR is used as the restoration model.

S11. Additional ablation studies

Exp Methods Acc↑ (%) NIQE↓ Q-Align↑ PSNR↑
(1) EDTR (Ours) 68.8 4.75 3.48 23.03
(2) without trainable D 67.7 6.03 3.55 23.61
(3) without color correction 68.4 4.89 3.56 22.84

Table S7. Performance of EDTR-1 step under various settings.

Trainable decoder. The Exp-(2) result in Table S7 shows
the EDTR performance without a trainable VAE decoder.
Although EDTR without a trainable decoder obtains a
higher PSNR amount of 0.58 dB, it scores 1.1% lower
in classification accuracy and shows a worse NIQE score;
therefore, we opt for the VAE decoder to be trainable.

Wavelet color correction. The Exp-(3) result in Ta-
ble S7 shows the EDTR performance without Wavelet
color correction, as introduced in Equation (6) of the
main manuscript. EDTR without Wavelet color correction
achieves a slightly lower classification accuracy (−0.4%)
and a PSNR drop of 0.19 dB. Therefore, we opt to include
Wavelet color correction in our EDTR.

S12. Further visualization results

Benchmark datasets. Figures S4, S5, and S6 provide
additional visualizations across various high-level vision
tasks. We include further comparisons with SwinIR [27],
TDSR [14], RSRSSN [67], and ground-truths, expanding
on Figure 5 from our main manuscript. Figure S4 shows

that EDTR successfully restores fine details of the bird, re-
sulting in the only correct classification. Figure S5 demon-
strates that EDTR restores the horse’s mane and the bot-
tle’s shape, producing the most accurate segmentation re-
sults. Figure S6 illustrates that EDTR restores the horse’s
eye and the bottle’s shape, achieving the only correct detec-
tion. These results clearly demonstrate that EDTR, which
effectively leverages the powerful diffusion prior, is highly
valuable for addressing the TDIR problem in challenging
degraded scenarios.

Real-world images. Figures S3 provide additional visu-
alizations of real-world object detection. Our EDTR suc-
cessfully restores the shape of the boat, the horse’s face, and
the boy’s face using the powerful diffusion prior, enabling
successful detection in real-world degraded images. These
results demonstrate the strong generalizability and practi-
cality of our method.

(a) LQ (No restoration) (b) EDTR (Ours)

Figure S3. Additional real-world object detection results and
visualization of the restored image. The first, second, and third
images are from "14.png", "01.png" and "21.png" in the
real-world image set RealPhoto60 [61]. The EDTR-4 step model
is used for visualization.

4



(a) LQ (No restoration) (b) SwinIR [27] (c) TDSR [14] (d) RSRSSN [67]

(e) SR4IR [20] (f) EDTR (Ours) (g) HQ (Oracle) (h) HQ (Ground-truth)

(a) LQ (No restoration) (b) SwinIR [27] (c) TDSR [14] (d) RSRSSN [67]

(e) SR4IR [20] (f) EDTR (Ours) (g) HQ (Oracle) (h) HQ (Ground-truth)

Figure S4. Further visualization of images and image classification results on degraded LQ (Mixture-B) images. We show the
restored images and the corresponding predicted or ground-truth labels. The EDTR-1 step model is used for visualization.

5



(a) LQ (No restoration) (b) SwinIR [27] (c) TDSR [14] (d) RSRSSN [67]

(e) SR4IR [20] (f) EDTR (Ours) (g) HQ (Oracle) (h) HQ (Ground-truth)

(a) LQ (No restoration) (b) SwinIR [27] (c) TDSR [14] (d) RSRSSN [67]

(e) SR4IR [20] (f) EDTR (Ours) (g) HQ (Oracle) (h) HQ (Ground-truth)

Figure S5. Further visualization of images and semantic segmentation results on degraded LQ (Mixture-B) images. We show the
restored images and the corresponding predicted or ground-truth labels. The black line in the ground-truth segmentation map indicates
"don’t care" regions. The EDTR-4 step model is used for visualization.

6



(a) LQ (No restoration) (b) SwinIR [27] (c) TDSR [14] (d) RSRSSN [67]

(e) SR4IR [20] (f) EDTR (Ours) (g) HQ (Oracle) (h) HQ (Ground-truth)

(a) LQ (No restoration) (b) SwinIR [27] (c) TDSR [14] (d) RSRSSN [67]

(e) SR4IR [20] (f) EDTR (Ours) (g) HQ (Oracle) (h) HQ (Ground-truth)

Figure S6. Further visualization of images and object detection results on degraded LQ (Mixture-B) images. We show the restored
images and the corresponding predicted or ground-truth labels. The EDTR-4 step model is used for visualization.

7



References

[69] Loshchilov Ilya and Hutter Frank. Decoupled weight decay
regularization. In ICLR, 2019.

[70] Loshchilov I. and Hutter F. Sgdr: Stochastic gradient descent
with warm restarts. In ICLR, 2017.

[71] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. In JMLR, 2008.

8


	Degradation details
	Training details
	Impact of pre-restoration network
	Training algorithm
	Benefit of using two feature spaces in HLF
	Computational cost of the EDTR
	Output stochasticity of the EDTR
	Comparison with DiffBIR for detection
	SR4IR combined with SD
	Details for the previous works
	Additional ablation studies
	Further visualization results

