ExploreGS: Explorable 3D Scene Reconstruction
with Virtual Camera Samplings and Diffusion Priors

Supplementary Material

A. WildExplore Dataset

To evaluate the effectiveness of our method in real-world
exploration scenarios, we introduce WildExplore, a new
dataset for novel view synthesis task. Fig. | visualizes all
eight scenes in the dataset, including both train camera tra-
jectories and two exploration (evaluation) camera trajecto-
ries.

B. Enhance-Extrapolate Dataset

We create a dataset using 3DGS [1] renderings that simu-
lates artifacts caused by large viewpoint changes. While
3DGS-Enhancer [3] uses 130 scenes from DL3DV-10K [2],
we significantly scale up dataset to improve generaliza-
tion capability. To be specific, we select 1K scenes from
DL3DV-10K [2] and sample four subsets per scene using
two different strategies:

* One sequence sampling. We select a consecutive por-
tion of the scene, covering 10%, 30%, 50%, and 70% for
training.

* Two sequence sampling. We sample two consecutive se-
quences per scene, each covering 5%, 15%, 25%, or 35%
of the scene, ensuring that the total percentage aligns with
the first strategy. Sampled sequences have certain dis-
tance to ensure various camera trajectories.

C. Implementation details

Scene initialization. We obtain the mesh using TSDF af-
ter training 3DGS on training viewpoints. For the target
bounding box, we extract the oriented bounding box tightly
surrounding the mesh. We set visibility threshold as 0.5 for
occupancy grid estimation, motivated by ExtraNeRF [4].

Virtual view sampling. We discretize M into elevation
and azimuth bins at 30° intervals, totaling in 32 bins. For
camera translation, we use a fixed step size equal to the di-
agonal length of the scene bounding box divided by S. For
camera rotation, we apply a fixed angular step of 10°.

Diffusion model. Our video diffusion model is built on
DynamiCrafter [6]. We compose the input sequence as
15 test views sampled by methods described at B and one
frame from the training set selected as the nearest neighbor
to the chosen test frames. For text condition, we obtain a

Curated Nerfbusters Dataset ‘ PSNRT SSIM?T  LPIPS|
Nerfbusters 16.00 0.506 0.454
Ours 16.22 0.478 0.433

Table 1. Quantitative comparision between the original Nerf-
busters model and our ExploreGS.

Method | PSNRT  SSIMf  LPIPS|
3DGS 2016 0.797 0.334
3DGS +Depth | 2019  0.794 0.334
Ours 2188 0815 0.318

Table 2. Quantitative comparisons on ScanNet++.

scene description from GPT-40 with a maximum of 70 to-
kens. We train the diffusion model for 12 days on 4 A100
(40 GB) GPUs.

D. Experiments

Visualizations of virtual viewpoints. We provide the ex-
amples of sampled virtual viewpoints as shown in Fig. 2.
Virtual viewpoints are widely spread in the scene, leading
to maximize information gain.

Comparions with Nerfbusters [5]. To further validate
the effectiveness of our approach, we provide a compre-
hensive comparison between Nerfbusters and our method
on curated Nerfbusters dataset. As shown in Table | and
Fig. 5, our method consistently outperforms the original
Nerfbusters. Nerfbusters designs diffusion model to take
an occupancy grid with artifacts as input and to predict a re-
fined occupancy grid. Since it only removes floating points,
it is unable to fill missing information while our diffusion
model provides pseudo observations.

Comparison on ScanNet++ [7] For further validations,
We evaluate our method and baselines on eight scenes from
the ScanNet++ [7] dataset. Evaluation viewpoints of this
dataset are placed at arbitrary positions, including large
viewpoint changes. As observed in Table 2 and Fig. 3, our
method outperform all the baselines.

Ablation study on finetuning methods. We offer addi-
tional qualitative results of finetuning methods as illustrated
in Fig. 4. Although the quantitative improvements may ap-
pear marginal, our approach demonstrates its effectiveness
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Figure 1. Visualization of our WildExplore dataset for novel view synthesis. We present all eight scenes, showing both train camera

trajectories and exploration (evaluation) camera trajectories.
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Figure 2. Visualization of virtual camera placements on Curated
Nerfbusters scenes.
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Figure 3. Qualitative results on ScanNet++. Please zoom in for
the details.

in visual quality, resulting in sharper results and reduced ar-
tifacts.

GT No Conf. + Pixel +Pixel + GIOU

Pipe

Table

Figure 4. Qualitative ablation results on the finetuning.

E. Future works

Blurry pixels. Our method often produces blurry appear-
ance, mainly due to the limited capacity of the diffusion
model. While our diffusion model effectively fills missing
regions and removes artifacts, it often struggles to recover
high-frequency details (e.g. delicate floor patterns), thereby
leading to less sharp pixels in final outputs. A resolution
mismatch between the diffusion output and the rendered im-
age may also introduce minor errors. Adopting larger or
more improved diffusion backbones can mitigate this issue.
Nevertheless, our framework is orthogonal to the choice of
diffusion backbone, and can naturally benefit from future
advances in diffusion models.

Initial viewpoints selection. For virtual viewpoint sam-
pling, We opt to sample initial viewpoints from training
viewpoints at uniform intervals. While it still achieves
broad scene coverage, more principled initial view selection
can further improve sampling efficiency.
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Figure 5. Qualitative comparison between the original Nerfbusters
model and our ExploreGS.
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