FlowDPS : Flow-Driven Posterior Sampling for Inverse Problems

Supplementary Material

6. Derivation of DDIM Form

The stochastic part of the equation Eq. (14) is
Ca(t)Z 1)

= Cao(t)(\/1 — m& 1) + /7€)
= VCo(t)2 = Co(t)2mder + /Ca(t)2me. (38)

If we set k; = C5(t),/7;, this is equivalent to

\ Ca(t)? — k2, + \/Ee (39)

and the one step update is expressed as

Lt+dt

= C1(t)&ojy 4/ Ca(t)? — kFdy + 1/ ke (40)

which is in the same form as DDIM [23] but with different
coefficients C1(t) = a; + a¢dt = aqa; and Ca(t) = by +
btdt = bt+dt~

7. Proofs

Proposition 1 (Tweedie Formula). The denoised and noisy
estimate given x are given by

E[zo|®] = {at — atlﬂ B (a:t - ztvt(wﬁ)

t t

o= o] e

t

Proof. According to Eq. (9), we have v (x¢|xo) = a0 +
byx1. This leads to the representation of x,; with respect to
the conditional flow velocity:

Ty = aTo + by

ve(xe|X) — Qe
:at$0+bt< t(tl O) ¢ 0)

by
. b b
= (at - atl-:> o + gt”t(mt|w()) (41)

t t

Thus we have

Similarly, we have

Ty = a;xTo + by

—b
—a (%(%@9) tw1> + by

a
= (bt - i)t(.lt> x1 + ﬁvt(wtkﬂo) (42)
Q¢ Qg

which leads to

Elz: |z, = (bt - iﬁ) - (:Bt - ZtIE[vt(:vt|w0)])

t t

-1
= (bt - bt%) (1515 - C.Ltvt(wt)>
a¢ a¢

Proposition 2. Suppose the clean data manifold M is rep-
resented as an affine subspace and assume uniform distri-
bution over M. Then,

O

oL 1
Jo(ay) = 2 — —py, (24)

where Py denotes the orthogonal projection to M.

Proof. Using Eq. (11) and Eq. (18), we can express the Ja-
cobian as

1 Oz — b2V, 1

Here, we will derive the score function V, log p(x;) in a
closed form solution with assumptions and prove the result.
From the definition of affine conditional flow,

xy = P(T1|20) = A0 + b1, (44)

where 1 ~ N (0, 1), we get the explicit expression of

1 H:]}'t —atchHQ
p(xi|xo) = @mp2)ir P <_2b§ SCS))

Assume that the clean images are distribution on subspace
M uniformly. To express this, we start from defining p(x)
as a zero-mean Gaussian distribution with isotropic vari-
ance o.

1 P §
p(xo) = (2ro?)i? exp (/v@o”) (46)

202

as Pyraxy = xg. Considering the marginal density

p@ﬁZ/M%WW@Wmm 7)

we have to compute p(x¢|xg)p(xo) that is

1
p(@e|wo)p(wo) = 2rl?) 2 (2r0)12 exp(—d(zm,, @),
(48)
where
ey — azzol|®* || Przol)?
d(wtvwo) - 2bt2 20_2
_ Pd? | [P — avol® | |[Parol)®
207 202 552
_ HP/J_A“’I‘/”2 — ct||Pam]? n | Prxo — 1;0’577th||2
- 2b? 02Ct ’
and
b2
et ; (49)

T ¥t +a?

Therefore, after integrating out with respect to o, we have

NPrl® = el Pma?
T

logp(x;) = + const., (50)

leading to

_ P*,lwt — CtPth
2
bt

Vg, logp(x;) = (51)

By the assumption of uniform distribution in Eq. (46) with
o — 0o, we have ¢; — 0. Therefore,

1
P (52)

Jim Vg, logp(z) = 7

and we conclude that

1 9(@; — b}V, logp(e:))

Jo(z1) = o O, (53)
- 1 8(a:t — ,P‘/J\‘/l$t)
o (¢77 3mt (54)
_ 10wz 1, (55)
Qg 8$t Qg
O

8. Implementation Details

In this section, we provide implementation details of the
FlowDPS and baselines. For Stable Diffusion 3 and Flux.1,
you can refer the pseudocode of FlowDPS in Algorithm 1.

Implementation with flow models For a fair compar-
ison, we re-implement baselines that are proposed with
score-based diffusion models. In the following, we provide
details for each implementation.

PSLD [20] extends DPS [3] to latent diffusion models by
introducing a novel regularization loss for the autoencoder.
Since its gradient is computed with respect to the interme-
diate sample x; during the reverse diffusion process, the
same algorithm can be implemented using Euler’s method
without loss of generality.

ReSample incorporates data consistency into the reverse
sampling process of LDMs by solving an optimization
problem on some time steps. The key ideas of this frame-
work is Stochastic Resampling, for renoising the optimized
latent, and hard data consistency. We implement Resarr;ple
eEn ey
Resample uses various techniques such as dividing the sam-
pling process into three stages and separately using soft
data consistency and hard data consistency. We find that
adopting this same setting for our comparison produces ex-
tremely poor results, primarily because of the small number
of ODE steps of the Euler solver. We empirically find that
using skip step size of 1 to perform hard data consistency
on all steps produces best results, and use this setting for
comparison.

LatentDAPS proposes a noise annealing process to decou-
ple consecutive samples in a sampling trajectory, which en-
ables solvers to create errors made in earlier steps. We im-
plement LatentDAPS from the official code, with modifi-
cation of the solving process to use the linear flow-based
backbone model StableDiffusion 3.0 [6] and Euler solver.

for linear flow-based models by setting &y =

Hyper-parameter setting For all implementations, we
use StableDiffusion 3.0 [6] as our baseline model. Also,
we set the shift factor of time scheduler to 4.0.

* PSLD We set n = 1.0 and v = 0.1 by following the
original paper setting, and use 200 NFEs as in [8].

* Resample We use the same resampling hyperparameter
v () (1)
the original paper, reparameterizing a; as previously ex-
plained. Skip step size is set to 1 to perform sufficient
hard data consistency steps.

* LatentDAPS We use ODE solver steps Nopr = 5 and
annealing scheduler N4 = 28, resulting in a total NFE of
120. Total step number N in Langevin Dynamics is set to
50, following the settings of the original paper [27].

* FlowChef For a constant step size for the FlowChef, we
find the best configuration by grid search with 100 im-
ages. In consequence, we set the step size to 200 for the
super-resolution tasks and 50 for the deblurring tasks.

* FlowDPS For data consistency optimization, we use 3
steps of gradient descent with step size 15 for all tasks.

with v = 40 as proposed in

Algorithm 1 Algorithm of FlowDPS (SD3.0, FLUX)

Require: Measurement y, Linear operator A, Pre-trained
flow-based model vy, VAE encoder and Decoder &, D,
Text embeddings cg,c, CFG scale A, Stochasticity
level n, Noise Schedule o

I: Zz~ N(O, Id)

2: fort:1—0do

3 v(2) «— va(z,co) + Mooz, ¢) —vo(z,co))

4 £0|t —z— O't’Ut(Z)

5: £1|t — z+ (1 — O't)’l)t(Z)

6: > 1. Likelihood Gradient
7

8

9

Zop:(y) argmin,, [ly — AD(2)|>.
Zope < 0¢Zo1t(y) + (1 — 0¢) 2o
: > 2. Stochasticity
10: €~ N(O, Id)
11: Z1)t ¢ \/Otratz1t T V1 — Oryae

12: > 3. Euler update
13: AR (1 — Ut+dt>20|t + Ut+dt21|t

14: end for

9. Ablation Study

9.1. Analysis on 3; and ~;

In FlowDPS, we interpolate 2o, and Z¢)(y) with coeffi-
cient -y, to ensure the data consistency update does not lead
to excessive divergence for the flow model’s trajectory. For
the selection of v; = o, we refer to the progression of the
adaptive step size 3; in Eq. (28). Specifically, our likelihood
gradient is applied to clean estimation as

Z0):(y) = Zojt — BV, log p(y|Zoje)

where 5; = % C‘l’lf ok For a linear flow with oy = ¢,
G b (b by ot
g2l 22)=t 56
Q¢ @ Q¢ (lt Q¢ (1 — O't)2 ()
and [, is expressed as
dtO't

Br =

=002~ orrar) 7
with dt = o114 — o < 0. Figure 6 illustrates the progress
of —f,; during the sampling process. As we mentioned in
the main paper, it rapidly decreases to zero which leads to
higher stepsize for likelihood gradient in the early stage. In
our method, we imitate the theory-driven behavior of step
size for likelihood gradient by introducing interpolation co-
efficient y that emphasizes data consistency (i.e. likelihood
gradient) in the early stage.

9.2. CFG scale and NFE

CFG scale X\ is an important factor for generating high-
frequency details based on provided text prompts. When

5000

4000
. 3000
s

2000

1000 A

04

T T
10 0.75 0.5 0.25 0.0
Timestep t

Figure 6. Evolution of —/3; during sampling.

using low A, the model fails to capture fine details, pro-
ducing blurry results. Using high A enables the model to
better generate fine details, but can also guide sample gen-
eration in a completely wrong direction when excessively
high. Figure 7 in the Appendix shows how when using
higher NFEs, the model requires more guidance for pro-
duction of high-frequency details, causing higher values of
A to perform better.

Ground Truth

Measurement

NFE=28

NFE=50

NFE=100

Figure 7. Relation between NFE and CFG scale A. For varying
NFEs (28, 50, 100), we study the impact of A (0.0, 2.0, 7.5).

10. Non-Linear Inverse Problems

We provide additional results on using FlowDPS to solve
non-linear inverse problems. Specifically, we use Latent

LatentDAPS FlowChef FlowDPS

Measurement Resample

Figure 8. Qualitative comparison for non-uniform deblur.

Resample LatentDAPS FlowChef FlowDPS

PSNR 1 24.24 22.42 23.17 2548
FID | 128.7 72.18 110.5 61.03

Table 3. Quantitative comparison for the non-uniform deblurring
task (512 x 512). Various inverse problem solvers are compared
on 1k images of FFHQ. Bold: best, Underline: second best.

0.4

0.3

tvVl—t
°

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

t

Figure 9. Amount of stochastic noise added over time steps t.

FlowDPS (with Stable Diffusion 3.0) to solve non-uniform
deblur on 512 x 512 images. Qualitative and quantitative
comparison is given in Figure 8 and Table 3, respectively.
Results prove that FlowDPS is effective in solving any in-
verse problem with differentiable forward operators, includ-
ing non-linear inverse problems.

11. Importance of Stochastic Noise

We provide further insight into the performance improve-
ment brought about by stochastic noise. Stochastic noise
aids the escape from local minima during the sampling pro-
cess via a cleverly designed coefficient. Figure 9 is a plot
of the coefficient multiplied to stochastic noise during sam-
pling with linear flow. The coefficient increases early (t ~ 1)
to aid exploration, then decreases as data consistency estab-
lishes low-frequency content and sampling converges. Such
adaptive behavior significantly improves performance.

12. Conditional Generation with FlowDPS

Beyond the scope of inverse problems, we show how a
correct connection between the flow framework and pos-
terior sampling opens up interesting prospects for style/text
guided generation. In Figure 10 we confirm the potential

of FlowDPS via experiments related to FreeDoM, in which
the forward operator is the Gram matrix of the intermediate
feature of the CLIP encoder. Results show that our method
successfully performs conditional generation, thus proving
the wide applicability of FlowDPS.

13. Runtime Comparison

Among baselines, PSLD takes the longest time as it requires
computation of the Jacobian in terms of the transformer de-
noiser. In contrast, ReSample, FlowChef, and FlowDPS
do not perform this computation due to approximation of
the Jacobian, making them relatively efficient. Theoreti-
cally, the main computational bottleneck for these methods
is backpropagation through the decoder and all other com-
putations are relatively small, giving nearly identical run-
time. Although LatentDAPS does not require backpropaga-
tion through a neural network, repeatedly solving the flow
ODE and performing Langevin dynamics multiple times to
achieve sufficient performance induces longer runtime com-
pared to FlowDPS.

14. Additional Results
14.1. Higher pixel resolution

The diffusion process defined in latent space enables con-
trol over the generation process through various condi-
tions, such as text, while also improving computational ef-
ficiency. Specifically, latent flow models like Stable Dif-
fusion 3.0 can generate images with resolutions exceeding
1K pixels and support various aspect ratios beyond stan-
dard square formats. We leverage this advantage of latent
flow models to solve inverse problems, demonstrating the
practical applicability of FlowDPS in real-world scenarios.
In Figure 11, we address the motion blur problem using
1024x1408 images, obtained by cropping the central region
of the DIV2K training set. For the text guidance, we use
text description of the image extracted by LLaVA [13]. As
demonstrated in the main experiment, FlowDPS success-
fully solves inverse problems defined in higher pixel reso-
lutions without loss of generality.

14.2. Inverse problem solving with FLUX

The FlowDPS framework is designed for general affine con-
ditional flows, enabling the construction of an inverse prob-
lem solver with various flow models. In our main exper-
iment, we demonstrate the efficiency of FlowDPS using
a pre-trained linear conditional flow model, Stable Diffu-
sion 3. To further illustrate the generality of FlowDPS,
we also incorporate another open-source linear conditional
flow model, FLUX. Specifically, we set 7, = 0 and use
10 iterations for data consistency optimization. The step
size is set to 7.0 for super-resolution and 12.0 for deblur-
ring, while all other settings remain consistent with Stable

Style Reference Example 1 Example 2 Style Reference Example 1 Example 2

> AR el
' = ﬁ/\ '({’ ‘h"—‘ ‘
S?» v
k@@
Z ?‘,l\

o’/

. B = \ Ao S .
“bird’s eye view of city” old man walking w:th a dog” "portralt ofa boy"

Figure 10. Style/text guided conditional generation with FlowDPS for 768 x 768 images using Stable Diffusion 3.0. All settings are equal
to the settings we use for solving inverse problems, except for a CFG scale of 7.5 (inverse problems are solved with CFG scale of 2.0).

Diffusion 3. Figure 12 and 13 present the reconstruction re-
sults of FlowDPS with FLUX 1.0-schnell [10] on DIV2K
images. As in the main experiment, we utilize text prompts
extracted from measurements using DAPE [26]. Regardless
of the backbone model, FlowDPS effectively solves inverse
problems.

14.3. Additional Qualitative comparisons

In this section, we further provide qualitative comparisons
for the four inverse problems across the AFHQ and FFHQ
datasets. Figures 14-21 show that FlowDPS consistently
achieves promising reconstruction results and outperforms
all the baselines.

Measurement Reconstruction

Figure 11. Motion deblur results by FlowDPS with SD3.0 for DIV2K images (1024x1408)

SRx8 (avg-pool) SRx8 (bicubic)
Measurement Reconstruction Measurement Reconstruction

Figure 12. Super-resolution (x8) results by FlowDPS with Flux for DIV2K images (512x512)

Deblur (Gaussian) Deblur (Motion)
Measurement Reconstruction Measurement Reconstruction

Figure 13. Deblurring results by FlowDPS with Flux for DIV2K images (512x512)

Figure 14. Qualitative comparison for x12 super-resolution from average pooling on the AFHQ dataset.

Figure 15. Qualitative comparison for x12 super-resolution from bicubic downsampling on the AFHQ dataset.

Figure 16. Qualitative comparison for Gaussian deblurring on the AFHQ dataset.

Figure 17. Qualitative comparison for motion deblurring on the AFHQ dataset.

Figure 18. Qualitative comparison for x12 super-resolution from average pooling on the FFHQ dataset.

Figure 19. Qualitative comparison for x12 super-resolution from bicubic downsampling on the FFHQ dataset.

Figure 20. Qualitative comparison for Gaussian deblurring on the FFHQ dataset.

Figure 21. Qualitative comparison for motion deblurring on the FFHQ dataset.

	Introduction
	Background
	Main Contribution
	Decomposition of Flow ODE
	Posterior Sampling via Flow Models
	Comparison with other methods
	Latent FlowDPS

	Experiments
	Experimental setup
	Experimental Results with Inverse Problems
	Ablation study

	Conclusion
	Derivation of DDIM Form
	Proofs
	Implementation Details
	Ablation Study
	Analysis on t and t
	CFG scale and NFE

	Non-Linear Inverse Problems
	Importance of Stochastic Noise
	Conditional Generation with FlowDPS
	Runtime Comparison
	Additional Results
	Higher pixel resolution
	Inverse problem solving with FLUX
	Additional Qualitative comparisons

