
A. Implementation Details

A.1. Model Checkpoints
We use the pre-trained T2V diffusion model LaVie and VideoCrafter2, available at https://github.com/Vchitect/

LaVie and https://github.com/AILab-CVC/VideoCrafter, respectively. For LaVie, the Stable Diffusion v1.4 model is
employed to encode and decode latent. We also utilize CLIP from https://huggingface.co/openai/clip-vit-base-
patch32 and the ImageReward model from https://github.com/THUDM/ImageReward.

A.2. Evaluation Details
During the video guidance process, we extract key frames from the video—specifically, the first, sixth, eleventh, and

sixteenth frames—and assess the reward. When using an LVLM as the reward model, we concatenate the key frames using the
following scripts:

1 fig , axes = plt.subplots(2, 2, figsize =(12, 8))
2 key_frames = [0, 5, 10, 15]
3

4 for idx , frame in enumerate(key_frames):
5 ax = axes[idx // 2, idx % 2]
6 ax.imshow(video[0, :, frame , :, :]. permute(1, 2, 0).cpu().numpy())
7 ax.axis(’off’)
8 ax.set_title(f’Frame {frame + 1}’)
9

10 # Adjust the layout and show the plot
11 plt.tight_layout ()
12 plt.savefig(f’frame_{i}_{j}.png’)

Listing 1. Pseudo-code for stitching key frames at once.

Next, we provide a system instruction that allows the LVLM to understand the sequence order and explicitly describes the
task it should perform.

1 You are a useful helper that responds to video quality assessments .
2 The given image is a grid of four key frames of a video: the top left is the first frame, the top right is the second
3 frame, the bottom left is the third frame, and finally the bottom right is the fourth frame.
4 Answer the reason first and the final answer later . Start the reason first with ‘Reasoning: ’ in front of the reason part
5 and review your reasoning logically .
6 After reviewing your reasoning , give the final answer with ‘Answer: ’.
7 You should check all frame and comparing them, and ensure your reasoning leads to a sound final answer.
8 Your final ‘answer’ should one score only and the score must be from 1 to 9 without decimals .
9 Let’s think step by step .

Listing 2. System instruction for GPT-4o

For a given video, we input the user prompt to the LVLM as follows:

1 For a given image as keyframes of video , Rate the following questions :
2 Considering all four images, does the prompt, prompt , describe the video well enough?
3 Review your reasoning thoroughly and then respond with your final decision prefixed by Answer: ’.

Listing 3. User prompt for GPT-4o

where prompt is the given text prompt (e.g. “a bird and a cat”)

B. Limitation

Sampling in our approach requires additional processing time to approximate the gradient. While our approach extends
sampling time compared to baseline, it uniquely enables guidance with non-differentiable reward models such as LVLM APIs.
Additionally, the effectiveness of our framework is influenced by the accuracy of the reward function, which opens avenues for
further improvements as reward models continue to advance.

https://github.com/Vchitect/LaVie
https://github.com/Vchitect/LaVie
https://github.com/AILab-CVC/VideoCrafter
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://github.com/THUDM/ImageReward


C. Additional Ablation Study

Number of Samples We analyze the effect of the sampling quantity on text
alignment performance, evaluating the average text alignment score using the
LaVie model with a CLIP reward model. As shown in Table 7, we find an optimal
sampling size at n = 5. Increasing the number of samples increases the likelihood
of selecting a denoised video that aligns with the desired control. However,
excessive sampling introduces a risk: errors predicted by Tweedie’s formula in
initial sampling steps may result in irreversible changes, affecting video quality
negatively.

n Avg.

1 0.3722
3 0.3749
5 0.3780
10 0.3705

Table 7. Quantitative results on text align-
ment by sample size.

Guidance Range We also evaluate the effect of the guidance range with the
same baseline. Table 8 reveals that applying guidance in the early stages is more
effective than in later stages, as these initial steps establish the overall spatial
structure of the video. However, extending the guidance range too far allows
errors in the approximated optimal control to accumulate, ultimately degrading
the quality of the final output video.

Guidance Step Avg.

None 0.3722
t ∈ [T, T − 5] 0.3780
t ∈ [T − 5, T − 10] 0.3769
t ∈ [T, T − 10] 0.3635

Table 8. Quantitative results on text align-
ment by range of guidance step.

Assessment policy using LVLM We evaluate the impact of the assessment pro-
tocol in LVLM by analyzing the average scores generated with the VideoCrafter2
model. Specifically, we modify the system prompt to instruct LVLM to answer
only with ‘yes’ or ‘no’ when assessing text-video alignment. The alignment score
is then derived by calculating the percentage of the top 5 logits that correspond
to ‘yes’. Table 9 reveals that scoring alignment on a scale from 1 to 9 achieves
better performance in terms of text alignment. This is likely because a broader
scale allows for more nuanced distinctions in fidelity, enabling LVLM to capture
subtle differences in text-video alignment more effectively.

Method Text Alignment General Quailty Avg.

VC2 0.4129 0.7617 0.5873
+GPT0/1 0.4358 0.7550 0.5954
+GPT1-9 0.4425 0.7537 0.5981

Table 9. Average results by assessment
policy using LVLM.

D. Additional Analysis

Method Appearance
Style

Temporal
Style

Human
Action

Multiple
Objects

Spatial
Relationship

Overall
Consistency

Avg.

LaVie 0.2312 0.2502 0.9300 0.2027 0.3496 0.2694 0.3722
+ GPT4o 0.2366 0.2508 0.9300 0.2546 0.3531 0.2709 0.3827
+ Qwen2.5-VL 3B Image 0.2388 0.2447 0.9700 0.2477 0.3238 0.2647 0.3816
+ Qwen2.5-VL 3B Video 0.2325 0.2464 0.9700 0.2431 0.3101 0.2738 0.3793

LTX-Video-2B 0.2189 0.1784 0.5303 0.1994 0.3436 0.1916 0.2770
+ GPT4o 0.2202 0.1813 0.5051 0.2335 0.4177 0.1947 0.2921

Table 10. Baseline comparison with open-source Image and Video LVLM and longer video generation model.

Aspects Baselines Ours

Overall Quality 2.61 3.19
Temporal Quality 2.65 3.21
Text Alignment 2.60 3.94

Table 11. User study.

Method GPU Memory Computing Time

Lavie 4.4 GiB 22.7 s/video
+Ours 7.5 GiB 154.5 s/video

Table 12. Computation.

Open-source LVLM. We leverage an open-source LVLM (QWen2.5-VL 3B) using both stitched image input and direct video
input. As shown in Table 10, our framework consistently improves T2V alignment. Interestingly, image input demonstrated
stronger performance than direct video input for this specific LVLM. We hypothesize this might be due to our frame stitching
method effectively highlighting key temporal information for the LVLM.



Style Semantics Condition Consistency
Avg.

Method Appearance Style Temporal Style Human Action Multiple Objects Spatial Relationship Overall Consistency

LaVie [43] 0.2312 0.2502 0.9300 0.2027 0.3496 0.2694 0.3722
+ CLIP 0.2370 (+2.5%) 0.2490 (-0.5%) 0.9400 (+1.1%) 0.2607 (+28.6%) 0.3074 (-12.1%) 0.2738 (+1.6%) 0.3780
+ ViCLIP 0.2348 (+1.6%) 0.2485 (-0.7%) 0.9600 (+3.2%) 0.2149 (+6.0%) 0.2872 (-17.9%) 0.2752 (+2.1%) 0.3701
+ GPT 0.2366 (+2.3%) 0.2508 (+0.2%) 0.9300 (-0.0%) 0.2546 (+25.6%) 0.3531 (+1.0%) 0.2709 (+0.6%) 0.3827

Temporal Consistency Dynamics Frame-wise Quality
Avg.

Method Subject Consistency Background Consistency Motion Smoothness Dynamic Degree Aesthetic Quality Imaging Quality

LaVie [43] 0.9450 0.9689 0.9718 0.4799 0.5687 0.6611 0.7659
+ CLIP 0.9495 (+0.5%) 0.9712 (+0.2%) 0.9735 (+0.2%) 0.4560 (-5.0%) 0.5727 (0.7%) 0.6637 (+0.4%) 0.7644
+ ViCLIP 0.9443 (-0.1%) 0.9694 (+0.0%) 0.9741 (+0.2%) 0.4707 (-1.9%) 0.5746 (1.0%) 0.6487 (-1.9%) 0.7636
+ GPT 0.9470 (+0.2%) 0.9693 (+0.0%) 0.9742 (+0.2%) 0.4725 (-1.5%) 0.5726 (+0.7%) 0.6615 (+0.1%) 0.7662

Table 13. Comparison with video-based reward model. Higher numbers indicate better video quality. The numbers in parentheses denote the
performance difference from the baselines.

Long Video Generation Model. To address concerns about generalization to longer videos, we applied Free2Guide to a
long video generation model (LTX-video 2B), generating 15-second videos. As presented in Table 10, we measure VBench2-
beta-long metrics and our framework significantly improves performance over the baseline (which used stochastic sampling
for fair comparison), demonstrating its effectiveness in longer videos.

User Study. We conducted a user study with 50 participants on Prolific, comparing videos from our method against the
baseline (LaVie and VideoCrafter2). Participants rated videos on a 1-5 scale for overall quality, temporal quality, and text
alignment. Our method was consistently preferred across all aspects, as shown in Table 11.

D.1. Video Reward Guidance
While using a video-based reward model to guide videos is a more natural approach, we claim that video reward models

fail to capture the representation needed for guidance because the dataset of video-text pairs is relatively limited compared
to images. To support this, we compare the results of using a video-based reward model for guidance with a video-based
reward model for text alignment. We adopt ViCLIP [44], a pre-trained video-text representation learning model available at
https://huggingface.co/OpenGVLab/ViCLIP, as the video reward model. Using LaVie as the baseline, we compute the
reward based on eight video frames, measuring the similarity between the video and text embeddings.

Table 13 shows that the video-based reward model does not significantly outperform the image-based reward model.
However, it specifically enhances the Overall Consistency and Dynamic Degree metrics. It is worth noting that the Overall
Consistency metric is evaluated using ViCLIP itself, which could introduce a bias favoring the video reward model. In addition,
we observe that ViCLIP struggles with spatial information processing compared to CLIP, leading to lower performance on the
Multiple Objects and Spatial Relationship metrics. These results highlight the challenges of video reward models to fully
capture the relationship between video and text due to the lack of training datasets.

D.2. Video Inverse Problems
Our framework can readily extend to inverse problems in the video domain, building on approaches from previous

work [17, 51]. In Figure 5, we show a video reconstructed by our method using ×16 average pooling on spatial resolution.
For the reward function, we use the L2 distance between the corrupted denoised video and the corrupted video, applying a
sampling size of 10 at each step with DDIM over 500 steps, using VideoCrafter2. Our results demonstrate that, compared to
unguided sampling, our method generates realistic videos that remain faithful to the input. We leave further extension to video
inverse problems as future work.

https://huggingface.co/OpenGVLab/ViCLIP


E. Additional Visual Results

Figure 5. The result of applying our method to the inverse problem. Baseline represents that no guidance is applied during sampling.



Figure 6. More qualitative comparison of different reward models. The red text highlights the difference between the models.



Figure 7. More qualitative results of ensembling with LVLMs. The red text highlights the difference between the models.



“The background is changing from blue to pink”

Lavie

Lavie + GPT4o

“The light bulb is turning off.”

Lavie

Lavie + GPT4o

“The glass is going from empty to full of water.”

VideoCrafter

VideoCrafter + GPT4o

Figure 8. More qualitative comparison of T2V-Compbench to analyze video-specific dynamics. The red text highlights the difference
between the models.
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