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Supplementary Material

A. Preliminaries: URAvatar [4]
Our method builds on URAvatar [4], a universal 3D avatar
model that extends the relightable 3D Gaussian representa-
tion of RGCA [9] to multiple subjects. To provide the nec-
essary background, we first describe RGCA [9] for person-
specific relightable 3D Gaussian avatars, followed by the
multi-subject extension introduced in URAvatar [4].

RGCA [9] proposed a relightable 3D Gaussian head
avatar model [9] that learns a latent space of facial expres-
sions using a conditional variational autoencoder (VAE) [3].
The encoder maps an unwrapped UV texture map and
tracked mesh vertices to an expression code, which is then
used by a set of decoders to generate 3D Gaussian prim-
itives. Given the unwrapped texture map T and tracked
mesh vertices V, the encoder produces the mean µe and
covariance σe of the expression code:

µe, σe = E(V,T; Θe). (1)

The decoders reconstruct the tracked mesh vertices V and
generate Gaussian primitives [2], which are splatted [12] to
render the avatar. Building on this, URAvatar [4] general-
izes the relightable 3D Gaussian avatar to multiple subjects
by introducing an identity-conditioned hypernetwork [1].
This hypernetwork, Eid, generates bias maps for avatar de-
coders and expression-agnostic attributes, given the UV-
unwrapped mean albedo and geometry maps of the facial
tracked meshes:
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where N is the number of Gaussians, ok and ρk are
expression-agnostic opacity and albedo of 3D Gaussians,
and Θid
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jected into the intermediate feature maps of their respective
decoders.

The geometry decoder Dg predicts tracked mesh ver-
tices: {

t̂k
}N

k=1
= Dg(z, e{l,r}, rn; Θ

id
g ,Φg), (3)

where z is an expression code, e{l,r} are eye gaze direction
vectors, and rn is the axis-angle neck rotation relative to the
head. The predicted vertices serve as anchors for Gaussians
produced by the appearance decoders. The two Gaussian
decoders, Dvi and Dvd, generate the geometric and appear-
ance attributes needed to evaluate each Gaussian’s radiance:

{δtk, qk, sk,dk, σk}Nk=1 = Dvi(z, e{l,r}, rn; Θ
id
vi,Φvi),

(4)

{δnk, vk}Nk=1 = Dvd(z, e{l,r}, rn,ωo; Θ
id
vd,Φvd), (5)

where δtk is the position offset, qk is the orientation, and
sk is the scale of each Gaussian. dk represents the SH coef-
ficients for color and monochrome components [9], and σk

is the roughness parameter as defined in Eq. (2) of the main
paper. The term δnk denotes the view-dependent delta nor-
mal, and vk represents the visibility term.

To account for eye modeling, URAvatar includes a uni-
versal relightable explicit eye model adapted from Saito
et al. [9]. The eye hypernetwork Eeye generates bias maps
for the eye Gaussian decoders, ensuring identity-specific
adaptation:
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where Te and Ge correspond to the eye region in the mean
texture and geometry maps. The eye Gaussian decoders
predict similar attributes as the main avatar decoders, with
a unified decoder for the specular visibility map to better
preserve eye reflection priors. For further details, we refer
readers to the paper [4].

B. Synthetic Bald Image Generation
B.1. Synthetic Bald Image Pairs
To validate the consistency between the original and syn-
thetic bald images used for training, we present example
image pairs in Fig. 1. These pairs are constructed using the
compositing scheme described in the main paper (Eq. (22)),
where the face region is taken from the original image and
the occluded scalp region is inpainted with the rendered
bald mesh. By carefully processing the hair mask to ensure
smooth transitions, our method produces visually coherent
bald images across diverse viewpoints and expressions.

B.2. Bald Texture Optimization
Optimization details. We present the details of bald tex-
ture optimization (Sec. 3.3). To optimize the bald texture
MLP, we use the loss function Lbald from Eq. (20) in the
main paper, running a two-stage optimization over 2500 it-
erations. For the first 1500 iterations, we apply only the
reconstruction loss Lrec

bald to reconstruct the visible face re-
gion. In the next 1000 iterations, we introduce SDS loss [7]
to refine the texture in hair-occluded regions while con-
tinuing reconstruction loss, using weights λrec

bald = 1 and
λsds
bald = 10−6. During the SDS stage, we employ an

inpainting image-to-image diffusion model with Control-
Net [10], trained on dome-captured human images [5]. For



Figure 1. Synthetic bald image pairs. Each pair shows (left) the original image and (right) the synthetic bald image generated using our
compositing pipeline. The synthetic bald images preserve facial identity while removing hair occlusion, enabling effective supervision for
face-hair disentanglement.

(a) Target hairstyle (b) Hair-tied capture (c) Optimized bald mesh

Figure 2. Auxiliary capture for bald texture optimization. To
minimize occlusion from certain hairstyles, we capture an addi-
tional image with the subject’s hair tied back (b). This ensures
that the optimized bald texture (c) maintains consistent skin color,
even when the target hairstyle (a) differs.

the first 500 iterations of SDS loss, we use a bald image
prompt generated from a pretrained text-to-image (T2I) in-
painting diffusion model [8] as an input image prompt to
our diffusion model. In the final 500 iterations, we replace
this image prompt with the rendered bald mesh, using its
actively optimized texture map for rendering. By this stage,
the rendered bald image provides better consistency than
the bald image generated from the pretrained T2I model,
leading to more coherent texture refinement.

Auxiliary capture for bald texture optimization. Cer-
tain hairstyles, such as long hair or bangs, can cause severe
occlusions that degrade the quality of the optimized texture
map. To mitigate this, we capture subjects with their hair
tied back or secured with a thin hairband to minimize oc-
clusion (e.g. Fig. 2b). Reducing occlusion maximizes the
visible reconstruction region and decreases reliance on the

diffusion prior. It is important to note that this capture is
used solely for bald texture optimization. For instance, in
Fig. 2, although the target hairstyle for training the hair-
compositional avatar corresponds to Fig. 2a, we use a sepa-
rate capture (Fig. 2b) to ensure that the pseudo-bald images
maintain consistent skin color beneath the hair.

C. More Qualitative Results
Hairstyle transfer. To demonstrate the robust disentan-
glement and flexible compositionality of our 3D avatar
model, we provide additional qualitative results of hairstyle
transfer in this section. As elaborated in the main paper, our
framework enables the independent manipulation and trans-
fer of facial and hair components across different identities.
This is achieved by defining hair Gaussians relative to a bald
mesh anchor, which allows for seamless adaptation to the
target subject’s head shape without the need for additional
scaling or alignment steps. Figure 3 illustrates the capabil-
ity of our model to transfer various hairstyles onto a sin-
gle facial identity while preserving the facial characteristics
and expression. In this example, a consistent facial iden-
tity and expression is combined with different hair attributes
sourced from various individuals, showcasing how a sin-
gle avatar can adopt diverse hairstyles realistically. Con-
versely, Figure 4 demonstrates the flexibility of our method
in transferring a single hairstyle onto multiple distinct fa-
cial identities, each maintaining their unique facial features
and expressions. This cross-reenactment with hair transfer
highlights the generalizability of our hair model, as it adapts
a specific hairstyle to different head shapes and facial fea-
tures, producing visually coherent and high-fidelity results.
These examples collectively emphasize the effectiveness of



Figure 3. Hairstyle Transfer: Single Face, Multiple Hairs. This
figure demonstrates transferring various hairstyles onto a single fa-
cial identity. The consistent facial features and expressions high-
light the model’s ability to seamlessly integrate different hairstyles
while preserving identity.

our compositional prior model in achieving high-quality,
controllable 3D avatar synthesis through disentangled face
and hair representations.

Relighting with hairstyle transfer. Our model inherits
the relightable 3D Gaussian appearance model from Saito
et al. [9] and URAvatar [4], enabling realistic lighting ef-
fects on both face and hair. As shown in Fig. 5, our ap-
proach is the first to support relightable hairstyle trans-
fer, maintaining consistent illumination across both com-
ponents. While this aspect builds on existing techniques, it
marks a significant step forward by demonstrating relighta-
bility in the context of hairstyle transfer, ensuring natural
and cohesive lighting under varying conditions.

Compositional 3D avatars. Our approach provides a uni-
fied 3D compositional representation of training subjects.
Fig. 6 presents the results of our model trained with 64 sub-
jects for compositional rendering, face-only rendering, and
hair-only rendering, demonstrating effective separation of
face and hair without compromising the quality of the com-
bined 3D avatar. Notably, our model reconstructs a plau-
sible facial appearance even in regions occluded by hair,
which is crucial for seamless hairstyle transfer.

Figure 4. Hairstyle Transfer: Single Hair, Multiple Faces. This
figure illustrates transferring a consistent hairstyle across multi-
ple distinct facial identities with varying expressions. The results
show the adaptability of our hair model to different head shapes,
enabling robust cross-reenactment with hair transfer.

Zero-shot and fine-tuned 3D compositional avatars.
Our model extends zero-shot inference to a compositional
setting, generating 3D avatars with plausible face and hair
representations by directly feeding the geometry and albedo
maps of a novel identity into the identity-conditioned hy-
pernetworks [1, 4], without requiring fine-tuning. Unlike
autodecoder-based models [6], which require latent code
inversion to obtain reasonable results for unseen identi-
ties [11], our hypernetwork-based design enables zero-shot
inference in a simple feed-forward manner. As shown
in Fig. 7, our zero-shot compositional avatar successfully
reenacts expressions while reconstructing a full 3D appear-
ance, even in regions originally occluded by hair, benefit-
ing from the priors learned during pretraining. However,
hair reconstruction in zero-shot results is less detailed com-
pared to the face. This is because hair exists in a signif-
icantly higher-dimensional manifold with complex varia-
tions in shape and texture, making it more challenging to
model. Fine-tuning Sec. 3.5 on a head rotation video with
a neutral expression refines both facial and hair details, sig-
nificantly enhancing visual fidelity.



Orig. Lighting RelightingFace/Exp. ID Hair ID

Figure 5. Relighting with hairstyle transfer. The leftmost col-
umn shows face and expression reference images captured from
a real subject (Face/Exp. ID), with expression changing across
frames. The second column shows the hair identity image (Hair
ID) used for hair transfer. The remaining columns visualize avatar
rendering results under different lighting conditions. “Orig. Light-
ing” corresponds to the original lighting condition under which the
subject was captured. “Relighting” corresponds to avatar render-
ing under novel lighting conditions defined by various environ-
ment maps, with each environment map visualized as a reference
ball in the bottom-right corner of each image.
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Michael Zollhöfer, Te-Li Wang, Shaojie Bai, Chenghui Li,
Shih-En Wei, Rohan Joshi, Wyatt Borsos, Tomas Simon,
Jason Saragih, Paul Theodosis, Alexander Greene, Anjani
Josyula, Silvio Mano Maeta, Andrew I. Jewett, Simon Ven-
shtain, Christopher Heilman, Yueh-Tung Chen, Sidi Fu, Mo-
hamed Ezzeldin A. Elshaer, Tingfang Du, Longhua Wu,
Shen-Chi Chen, Kai Kang, Michael Wu, Youssef Emad,
Steven Longay, Ashley Brewer, Hitesh Shah, James Booth,
Taylor Koska, Kayla Haidle, Matt Andromalos, Joanna Hsu,
Thomas Dauer, Peter Selednik, Tim Godisart, Scott Ardis-
son, Matthew Cipperly, Ben Humberston, Lon Farr, Bob
Hansen, Peihong Guo, Dave Braun, Steven Krenn, He Wen,
Lucas Evans, Natalia Fadeeva, Matthew Stewart, Gabriel
Schwartz, Divam Gupta, Gyeongsik Moon, Kaiwen Guo,
Yuan Dong, Yichen Xu, Takaaki Shiratori, Fabian Prada,
Bernardo R. Pires, Bo Peng, Julia Buffalini, Autumn Trim-
ble, Kevyn McPhail, Melissa Schoeller, and Yaser Sheikh.
Codec Avatar Studio: Paired Human Captures for Complete,
Driveable, and Generalizable Avatars. NeurIPS Track on
Datasets and Benchmarks, 2024. 1

[6] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proc. CVPR, 2019. 3

[7] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. In Proc.
ICLR, 2023. 1

[8] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In Proc. CVPR, 2022. 2

[9] Shunsuke Saito, Gabriel Schwartz, Tomas Simon, Junxuan
Li, and Giljoo Nam. Relightable gaussian codec avatars. In
Proc. CVPR, 2024. 1, 3

[10] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proc. ICCV, 2023. 1

[11] Xiaozheng Zheng, Chao Wen, Zhaohu Li, Weiyi Zhang,
Zhuo Su, Xu Chang, Yang Zhao, Zheng Lv, Xiaoyuan
Zhang, Yongjie Zhang, et al. Headgap: Few-shot 3d head
avatar via generalizable gaussian priors. arXiv preprint
arXiv:2408.06019, 2024. 3

[12] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Ewa splatting. IEEE Trans. Vis. Comput.
Graph., 8(3):223–238, 2002. 1



Figure 6. Compositional 3D avatars of the training subjects.



Zero-shot Avatar Fine-tuned AvatarGT

Figure 7. Zero-shot and Fine-tuned Compositional Avatars. Our model generates a plausible 3D avatar for a novel identity without
fine-tuning (Zero-shot Avatar, middle column), reenacting the facial expression shown in the reference image (GT, left column). We
visualize the compositional, hair-only, and face-only renderings for both the zero-shot and fine-tuned avatar results (Fine-tuned Avatar,
right column). Fine-tuning improves visual fidelity and consistency while preserving the disentangled structure of face and hair.
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