IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising

Supplementary Material

Al. Appendix
Al.1. Details Regarding Test Noise

To rigorously evaluate OOD denoising robustness, we
benchmark eight noise categories: (1) real-world noise
captured by smartphone and DSLR cameras; (2) Monte
Carlo (MC)-rendered noise spp € {64,128}; (3) additive
Gaussian noise with o € {15,25,50}; (4) spatially cor-
related Gaussian noise with o € {45,50,55}; (5) Pois-
son noise with o € {2.5,3.0,3.5}; (6) speckle noise with
o € {0.02,0.03,0.04}; (7) salt-and-pepper noise with
p € {0.012,0.016,0.02}; and (8) mixture noise at levels
{1, 2, 3,4}. Following MaskedDenoising [8], Gaussian and
spatial Gaussian noise levels are rescaled to [0, 255], whereas
the remaining noise levels are normalized to [0, 1].

Further implementation details are provided in the subse-
quent subsections.
Spatial Gaussian Noise. Spatial Gaussian noise differs
from standard Gaussian noise in that its values are spatially
correlated rather than independent across pixels. This corre-
lation often arises from sensor imperfections or smoothing
effects during image processing. Following MaskedDenois-
ing [8], we synthesize spatial Gaussian noise by convolving
i.i.d. Gaussian noise with standard deviation o using a 3 x 3
averaging filter.
Poisson Noise. Poisson noise, often referred to as pho-
ton or shot noise, originates from the quantized nature of
light. Its variance is equal to the mean signal level, mak-
ing it inherently signal-dependent. This type of noise is
particularly prevalent in low-light conditions, where the pho-
ton count is low. We synthesize Poisson noise as follows:
Inoisy = Iciean + 11 - @, where n is sampled from a Poisson
distribution and « controls the noise magnitude.
Salt-and-Pepper Noise. Salt-and-pepper noise is an im-
pulsive corruption characterized by random occurrences of
extreme pixel intensities (i.e. pure black or white). This
artifact commonly stems from transmission errors or sensor
defects. Following MaskedDenoising [8], we synthesize
salt-and-pepper noise with MATLAB’s imnoise function.
Speckle Noise. Speckle noise is a multiplicative perturbation
commonly observed in coherent imaging modalities such
as synthetic aperture radar (SAR) and ultrasound; it origi-
nates from the interference of multiple scattered wavefronts
and manifests as granular texture. Following MaskedDe-
noising [8], we synthesize speckle noise with MATLAB’s
imnoise function.
Mixture Noise. The mixture noise model combines several
noise sources, including Gaussian, Poisson, speckle, and salt-
and-pepper noise, to emulate real-world noise characteristics.

Table Al. Comparison of denoising performance based on model
capacity. The number of parameters for DnCNN and Restormer
are set to be similar to those of our method. The best results are
highlighted in bold.

Params. Gaussian Spatial Gaussian SIDD
Methods M
M) PSNR1/SSIMT PSNR1/SSIMT PSNR?1/SSIM*T
DnCNN 0.04 19.74/0.4262 27.24/0.7966 28.93/0.6040
Restormer 0.04 20.11/0.4389 26.39/0.7572 27.39/0.5388
Ours 0.04 25.06/0.7547 27.78/0.8333 32.08/0.7578

Following MaskedDenoising [8], we synthesize this mixture
by sequentially adding Gaussian noise with variance 03,
speckle noise with variance o2, Poisson noise scaled by a,
salt-and-pepper noise with density d, and a second speckle
component with variance o2,.

We categorize the mixture noise into four levels, deter-

mined by their overall intensity and complexity:

Level I: 02 =0.003, 0% =0003, a=1, d=
0.002, 02, = 0.003,

Level 2: o2 =0.004, 02 =0.004, a=1, d=
0.002, o2, = 0.003,

Level 3: o2 =0.006, o2 =0.006, a=1, d=
0.003, 02, = 0.006,

Level4: o2 =0.008, 02 =0.008, a=1, d=
0.004, 2, = 0.008.

Note that, for each level, the individual noise components
are introduced in the prescribed sequence.
Monte Carlo-Rendered Image Noise. Noise produced by
the stochastic Monte Carlo integration underlying physically
based rendering results in sampling artifacts that reveal the
finite number of rays used to approximate light transport.
We evaluate the proposed method on the Monte Carlo noise
benchmark from [15].
Real-World Noise. Real-world camera images contain com-
plex noise arising from photon statistics, sensor readout,
and in-camera ISP post-processing. To evaluate the ro-
bustness of IDF in these conditions, we evaluate it on di-
verse datasets captured with both smartphone and DSLR
devices [1, 3, 54, 72].

A1l.2. Additional Ablation Studies

Impact of Model Capacity on Generalization. To in-
vestigate whether reducing the number of model parame-
ters alone can mitigate overfitting and enhance generaliza-
tion, we use two conventional denoisers, DnCNN [82] and
Restormer [79], with capacities adjusted to match our model.
These variants are evaluated on Urban100 [25] corrupted
with Gaussian noise (¢ = 50) and spatial Gaussian noise

Table A2. OOD denoising results on various training noise types. The best results are highlighted in bold.

Training Real-World Spatial Gaussian Medical Imaging Average
Noise Type Model (SIDD) (0 =55) (LDCT)
PSNR71/SSIMT PSNR1/SSIM?T PSNR1/SSIMT | PSNR1/SSIM*T

Gauss. o — 15 CGNet N 27.32/0.5359 25.41/0.6651 38.50/0.7878 30.41/0.6629
(Baseline) MaskedDenoising | 28.65/0.6043 26.72/0.7685 37.76/0.7880 31.04/0.7203
Ours 32.08/0.7578 27.87/0.8049 44.45/0.9643 34.80/0.8423
CGNet 25.36/0.4298 25.09/0.6492 43.69/0.9254 31.38/0.6681
(i) Gauss. o ~ U(15,50) | MaskedDenoising | 27.93/0.7320 25.07/0.7438 27.96/0.6870 26.99/0.7209
Ours 32.39/0.7786 28.08/0.8056 44.88/0.9684 35.12/0.8509
(ii) Gauss. o ~ U(15,50) CGNet 25.84/0.4440 25.48/0.6683 41.46/0.8737 30.93/0.6620
+ MaskedDenoising | 27.99/0.7433 25.03/0.7427 24.52/0.5447 25.85/0.6769
Poisson o ~ U(1,4) Ours 32.95/0.8197 27.95/0.8004 44.60/0.9632 35.17/0.8611
CGNet 27.31/0.5227 23.85/0.5861 44.70/0.9691 31.95/0.6926
(iii) Monte Carlo 16 spp | MaskedDenoising | 31.45/0.7359 25.24/0.6657 44.49/0.9674 33.73/0.7897
Ours 34.13/0.8414 26.10/0.7170 44.51/0.9625 34.91/0.8403

(o0 = 55), as well as on the SIDD real-world dataset. As
reported in Table Al, simply reducing network size does
not meaningfully alleviate overfitting because noise charac-
teristics vary substantially across types and levels. In con-
trast, our framework achieves the best performance across
all noise settings while remaining the most compact, thanks
to its modules that dynamically adapt to OOD noise.

Impact of Diverse Training Noise Conditions on Gen-
eralization. We perform ablation studies to evaluate how
well our method generalizes under varying training noise
conditions. Table A2 summarizes the performance of
IDF, MaskedDenoising [8], and the recent SOTA model
CGNet [17], each trained under three distinct noise regimes
(i—iii). All models are evaluated on challenging OOD noise
scenarios: real-world sensor noise from SIDD [1], spatially
correlated Gaussian noise on CBSD68 [61], and low-dose
CT (LDCT) scans [50]. The LDCT benchmark, whose inten-
sity distribution differs markedly from natural sSRGB images,
serves as an extreme test of OOD robustness. Because LDCT
volumes are single-channel, each slice is replicated across
three RGB channels to avoid architectural changes. Despite
CGNet’s 119M parameters and MaskedDenoising’s mixed-
noise curriculum, both methods suffer substantial perfor-
mance drops in these settings. In contrast, IDF consistently
preserves high fidelity across all benchmarks, and its accu-
racy improves as the training-noise configuration becomes
more heterogeneous, highlighting its noise-invariant filter-
ing capability. Please note that, for the LDCT evaluation,
we constrain IDF to a single denoising iteration to avoid
over-smoothing while maintaining computational efficiency.

Impact of Kernel Size. Table A3 analyzes how the patch-
convolution kernel size K (see Equation 1) affects denoising
performance on mixture and spatial Gaussian noise. A kernel
of K = 3 shows the highest PSNR and SSIM on both noise
types. Enlarging the kernel to K = 5 or K = 7 slightly
degrades performance, indicating that small receptive fields
capture essential local details without introducing excessive
smoothing. These results show that a 3 x 3 kernel offers the
best balance between detail preservation and noise removal
within our framework.

Table A3. Comparison results on denoising performance depending
on different kernel size K in Equation 1. The best results are
highlighted in bold.

Kernel Size Mixture Spatial Gaussian
(K) PSNR1/SSIMT PSNRY/SSIM{

3 27.52/0.8405 27.78/0.8333

5 27.27/0.8366 27.58/0.8259

7 27.30/0.8356 27.41/0.8143

Table A4. Comparison results on denoising performance depending
on different power normalization factor p in Equation 8. The best
results are highlighted in bold.

Power Norm. Mixture Spatial Gaussian
®) PSNR1/SSIMT PSNR1/SSIM?1
1 27.01/0.8289 27.34/0.8231
2 27.24/0.8325 27.65/0.8293
3 27.52/0.8405 27.78/0.8333
4 27.50/0.8398 27.55/0.8199

Impact of the Power Normalization Factor. We perform an
ablation study to investigate the impact of the power normal-
ization factor p (see Equation 8) on denoising performance.
The results are presented in Table A4 for two noise types:
mixture noise and spatial Gaussian noise. Four different
normalization factors, ranging from 1 to 4, are evaluated.
For mixture noise, performance consistently improves as
the normalization factor increases from p = 1 to p = 3, with
the highest PSNR observed at p = 3. A similar trend is
noted for spatial Gaussian noise, where p = 3 also shows
the best results among the evaluated settings. Increasing
the normalization factor to p = 4 does not lead to further
improvements; instead, it appears to reduce kernel diversity,
which negatively impacts performance. These results indi-
cate that a power normalization factor of p = 3 provides
the most effective denoising performance across both noise
types.
Impact of DIC threshold. Table A5 presents an ablation
study on the influence of the DIC threshold « (as defined

Table AS. Comparison results on denoising performance depending on different DIC threshold « in Equation 9. We choose x = 0.015 for

main results and corresponding scores are highlighted in bold.

Threshold ‘

Spatial Gaussian

® | o =45 \ o =50 \ o =55 \ Average
‘ PSNR1/SSIM1 # Iterations ‘ PSNR1/SSIM?{ # Iterations ‘ PSNR1/SSIM1 # Iterations ‘ PSNR1/SSIM1 # Iterations
0.005 28.89/0.8557 8.02 28.25/0.8432 8.22 27.70/0.8298 8.58 28.28/0.8429 8.27
0.01 28.80/0.8524 7.40 28.15/0.8383 7.54 27.65/0.8275 8.04 28.20/0.8394 7.66
0.015 28.77/0.8511 7.10 28.12/0.8364 7.22 27.54/0.8217 7.44 28.14/0.8364 7.25
0.02 28.73/0.8497 6.60 28.10/0.8340 6.72 27.49/0.8182 6.86 28.11/0.8340 6.73
0.025 28.69/0.8472 6.00 28.06/0.8324 6.32 27.43/0.8154 6.50 28.06/0.8317 6.27
0.03 28.65/0.8455 5.66 27.99/0.8290 5.78 27.42/0.8152 6.34 28.02/0.8299 5.93

Table A6. Comparison results on denoising performance depending
on the different number of training full iterations 7" in Figure 2.
The best results are highlighted in bold.

Iterations Mixture Spatial Gaussian
@) PSNR1/SSIM? PSNR1/SSIM?

6 27.32/0.8326 27.48/0.8162

8 27.37/0.8390 27.67/0.8287

10 27.52/0.8405 27.78/0.8333

12 27.42/0.8389 27.86/0.8383

in Equation 9) on denoising performance under spatial Gaus-
sian noise at varying noise levels (o = {45,50,55}). The
results include PSNR, SSIM, and the average number of
iterations before termination.

As k increases from 0.005 to 0.03, the average number of
iterations decreases from approximately 8.27 to 5.93. This
pattern is consistent across all noise levels, suggesting that a
looser threshold prompts earlier termination of the iterative
process, thereby reducing computational demands.

The findings reveal a clear trade-off: lower thresholds
yield more iterations and slightly better denoising perfor-
mance, whereas higher thresholds reduce computational cost
at the expense of minor performance degradation. Based on
this observation, we adopt x = 0.015 as the default setting,
as it offers a balanced compromise between performance
and efficiency.

The selection of x within our DIC mechanism directly
affects both computational efficiency and denoising quality.
For scenarios where computational constraints are impor-
tant, a higher threshold may be preferable despite a modest
performance loss. In contrast, for applications prioritizing
maximum denoising fidelity, a lower value that allows addi-
tional iterations may be more suitable. This flexibility allows
the framework to adapt to diverse practical requirements.
Impact of the Total Number of DID Block Full Iteration.
Table A6 presents an ablation study on the impact of the
number of full training iterations (1) on denoising perfor-
mance for two noise types: mixture and spatial Gaussian. As

shown in the table, varying the number of iterations leads to
differences in PSNR and SSIM.

Denoising performance progressively improves as 7' in-

creases from 6 to 10, reaching its peak at 7" = 10. A further
increase to 7' = 12 results in a slight performance decline, in-
dicating that excessive iterations may cause over-smoothing.
Considering both noise types and the trade-off between per-
formance and computational cost, we select T' = 10 as the
default setting. This choice strikes a balance between ef-
fective noise removal and detail preservation, while also
highlighting the advantages of our DIC strategy in adapt-
ing the iterative denoising process based on image content
and noise characteristics. These findings demonstrate the
importance of selecting an appropriate 7" to achieve optimal
performance across diverse noise scenarios without incurring
unnecessary computational overhead.
Further Analysis on Inference Speed. In addition to the
results presented in Table 4 of the main paper, we further
evaluate the effectiveness of the proposed DIC in terms of
computational efficiency. Specifically, we measure inference
speed using high-resolution 4K images to evaluate whether
IDF can be efficiently deployed in real-world scenarios.

While the runtime difference between the kernel-based
DIC variant and the full-iteration version is minimal for
160 x 160 images, the benefit of DIC becomes significantly
more evident at higher resolutions. On a single 4K frame,
the DIC variant achieves a substantial 30% speed-up (0.383s
vs. 0.548s).

These results highlight that IDF offers strong performance
in both OOD denoising and inference efficiency, making it
well-suited for practical deployment.

A1.3. DIC Algorithm

The overall inference algorithm of IDF is outlined in Algo-
rithm A1. The noisy input image is iteratively denoised for
up to T iterations. At each iteration, the dilation rate within
the DID block is alternated to balance global and local con-
text. Specifically, for odd-numbered iterations, the dilation
rate is set to two to capture broader contextual regions. In
contrast, during even-numbered iterations, the rate is reduced

Algorithm A1: Dynamic Iteration Control (DIC)
Require : Input noisy image Inoisy, max iteration 7’
I(O)

1 Clean — INOiSy

2 fort < 11t0T do

3 vy I(Ctlzall')]

4 if t = 1 then

s | 18 o0

6 else

U IR HTARSS e et

8 end

9 dilation <— (¢ mod 2 =1)

0 | 1%« DID-Block(y™®,1{{) | dilation)
11 if criterion in Equation 9 is met then
12 T+t

13 end

14 end

ccod i $(T)
15 return Denoised image I/,

Table A7. Comparison results on denoising performance depending
on DIC strategies with equivalent average iterations. The results of
Kernel-DIC are highlighted in bold.

Gaussian Spatial Gaussian SIDD
Methods
PSNR1/SSIMT PSNR7/SSIM1T PSNR1/SSIM?T
No-DIC 31.89/0.9029 27.09/0.7949 29.42/0.6384
Image-DIC 31.75/0.9008 27.14/0.7976 29.85/0.6603
Kernel-DIC 31.79/0.9010 27.22/0.8025 30.09/0.6739

to one, enabling a focus on local details. If DIC is enabled
and the stopping criterion is satisfied (see Equation 9), the
iterative denoising process is terminated early.

A1l.4. Additional Analysis on DIC

To accelerate inference efficiency, we propose the Dynamic
Iteration Control (DIC) mechanism, which adaptively de-
termines the number of denoising iterations based on im-
age content and noise characteristics. To comprehensively
evaluate DIC, we compare two variants in the following
subsections. One variant, referred to as Image-DIC, utilizes
the residual of the denoised images, while the other variant,
termed Kernel-DIC, utilizes the residual of the predicted
kernels, as described in Equation 9.
Comparison of Results with Equivalent Average Iter-
ations. Table A7 compares the denoising performance
of three strategies: No-DIC, Image-DIC, and Kernel-DIC,
while maintaining an equivalent average number of itera-
tions by manually adjusting the threshold « in Equation 9
for each test dataset. On the Gaussian noise dataset with
o = 15, which represents an in-distribution scenario, No-
DIC achieves the highest PSNR and SSIM. However, the dif-
ferences compared to the DIC-based variants are marginal.
For the more challenging spatial Gaussian noise with

6.5 —®— Image-Residual
Kernel-Residaul

6.4

|

Average lterations
o
N

6.1

6.0

o=45 o=50 o=55
Spatial Gaussian Noise

Figure Al. Comparison of results on averaged adaptive itera-
tions with different levels of noise using image residual-based
DIC (Image-DIC) and the kernel residual-based DIC (Kernel-DIC)
approaches.

o = 55, both DIC strategies lead to performance improve-
ments. Image-DIC provides moderate gains, while Kernel-
DIC offers further enhancement and outperforms No-DIC.
It is worth noting that Urban100 is used for both synthetic
noise settings. A similar trend is observed on the real-world
SIDD dataset, where the use of DIC results in notable per-
formance gains, with Kernel-DIC achieving the best results
among the three.

These findings suggest that adaptive iteration strategies

perform comparably to fixed-iteration methods under simple
noise conditions. In contrast, under complex noise distribu-
tions, they provide clear benefits, with the kernel-residual-
based DIC demonstrating the most consistent and robust
improvements.
Comparison of Image and Kernel-based DIC Results
with Different Levels of Noise. In Figure Al, both
Image-DIC and Kernel-DIC methods are evaluated under
spatial Gaussian noise at varying magnitudes (e.g., 0 =
{45, 50,55}) to determine which residual feature, image or
kernel, better reflects noise characteristics. As the noise
level increases from 45 to 55, the average number of it-
erations required by the kernel-DIC (Kernel-Residual) in-
creases linearly. In contrast, the iterations for the image-DIC
(Image-Residual) remain largely unchanged across noise
levels. These findings indicate that kernel-DIC is more re-
sponsive to noise magnitude, allowing for adaptive inference
and improved computational efficiency in noise-dependent
scenarios.

A1.5. Visualization of Predicted Kernels

To better understand how our model adapts to different noise
characteristics, in Figure A2, we visualize the predicted
kernel maps under a variety of noise types, including both

synthetic and real-world degradations. For each example,
we select representative pixel locations (highlighted with
red dots) and display their corresponding denoising kernels.
The predicted kernels vary in shape depending on both the
spatial structure and the underlying noise distribution. No-
tably, in flat or homogeneous regions, the kernels exhibit
near-uniform weights, enabling effective averaging to sup-
press noise. In contrast, in textured or edge regions, the
kernels become more anisotropic, preserving local struc-
tures. Importantly, all predicted kernels are normalized to
sum to one, effectively functioning as content-adaptive av-
eraging filters. This regularization improves stability and
prevents over-amplification of noise, especially under OOD
settings. These visualizations highlight how our model gen-
eralizes across noise domains by dynamically modulating its
receptive behavior based on local context.

A1l.6. Additional Analysis on Iterative Method

Visualization of the Iterative Refinement. To effectively
demonstrate how denoising kernels and denoised images
evolve over iterations, we present results from all ten it-
erations (7" = 10). Specifically, the denoised images are
shown in the upper row, while the corresponding averaged
denoising kernels are displayed in the lower row for clarity.
Gaussian and spatial Gaussian noise at levels 0 = 50 and
o = b, respectively, are applied to the CBSD68 [61] and
Urban100 [25] datasets for synthetic noise removal. Addi-
tionally, the SIDD [1] and SIDD+ [3] datasets are used for
evaluating real-world noise removal.

As illustrated in Figure A3 and Figure A4, even when
the type and level of noise degradation remain the same, the
denoising kernels differ between datasets. This variation
reflects the model’s ability to adapt to specific image char-
acteristics such as textures, and highlights its capacity for
input-dependent filter generation. Moreover, the model ex-
hibits sensitivity to different noise types, generating distinct
kernels based on noise characteristics, even when the image
content is unchanged.

Similarly, under real-world noise conditions (see Fig-
ure A5), the proposed framework dynamically adjusts to the
unique properties of the input signal, demonstrating strong
generalization capabilities in OOD scenarios. Notably, re-
gardless of signal content or noise characteristics, the denois-
ing kernels show progressive convergence across iterations,
which reflects the stability and robustness of the iterative
denoising process.

These observations confirm that the model is highly ro-
bust in OOD denoising tasks, consistently producing kernels
that flexibly adapt to diverse image content, noise types, and
intensity levels.

Al.7. Additional Denoising Results

Qualitative Comparison. We provide additional visual
comparisons with other benchmark models for both synthetic
and real-world noise removal in Figure A6 and Figure A7,
respectively. For reference, the original clean images and
their corresponding cropped regions of interest (ROI) are
presented in Figure A8.

Quantitative Comparison. We further evaluate the gener-
alization capability of our method by comparing its denois-
ing performance with several benchmark models, including
DnCNN [82], SwinlIR [44], Restormer [79], CODE [88],
and MaskedDenoising [8], across various synthetic noise
types and levels. Results from CLIPDenoising [11] are also
included for reference. A detailed comparison is provided
in Table AS8.

Table A8. Quantitative results of denoising performance on CBSD68, McMaster, Kodak24 and Urban100 with regard to varied synthetic
OOD noises in terms of PSNR1 and SSIM1. All methods are trained with Gaussian noise with a level of o = 15. The symbol T denotes that
our model] utilizes the proposed DIC during inference. The best and second-best results are highlighted in bold and underline.

| ClipDenoising | ~ DnCNN SwinIR Restormer CODE MaskedDenoising Ours' Ours
| PSNRY/SSIMT | PSNRT/SSIMT PSNRT/SSIM{ PSNR1/SSIMT PSNRY/SSIM ~ PSNRT/SSIM{ PSNRY/SSIM{ PSNRT/SSIMT

CBSD68 33.61/0.9273 33.64/0.9271 34.00/0.9319 33.99/0.9319 34.10/0.9339 30.78/0.8891 32.24/0.8939 32.18/0.8915
Gaussian MCMaster | 33.49/0.8932 34.30/0.9036 34.95/0.9117 34.83/0.9093 35.11/0.9276 30.90/0.8502 32.52/0.8776 32.11/0.8680
oc=15 Kodak24 34.27/0.9193 34.42/0.9209 34.99/0.9285 34.98/0.9287 34.95/0.9285 31.41/0.8833 32.93/0.8867 32.87/0.8839
Urban100 32.77/0.9179 33.64/0.9264 34.49/0.9338 34.45/0.9338 34.59/0.9492 29.32/0.8995 31.52/0.8947 31.42/0.8929

Noise Types Datasets

CBSD68 30.51/0.8718 24.89/0.6010 24.29/0.5639 27.51/0.7151 24.58/0.5631 28.20/0.8202 29.64/0.8376 29.80/0.8435
Gaussian MCMaster | 30.62/0.8319 25.63/0.5818 25.03/0.5468 28.07/0.6910 25.21/0.5395 28.99/0.7971 30.16/0.8218 30.10/0.8195

o=25 Kodak24 31.40/0.8681 24.83/0.5388 24.26/0.5023 27.87/0.6731 24.57/0.5067 28.85/0.8004 30.36/0.8296 30.64/0.8410
Urban100 30.05/0.8761 25.28/0.6476 24.66/0.6147 28.06/0.7530 24.99/0.6195 27.51/0.8419 29.17/0.8534 29.28/0.8571

CBSD68 29.34/0.8488 28.19/0.7907 27.27/0.7391 24.14/0.6686 27.27/0.7353 28.13/0.8181 29.01/0.8368 29.20/0.8440

Gsalljl?slizln MCMaster | 29.79/0.8236 28.68/0.7707 27.79/0.7189 23.93/0.6059 27.55/0.6890 28.43/0.7778 29.21/0.8035 28.63/0.7860
o — 45 Kodak24 29.97/0.8377 28.32/0.7591 27.34/0.7006 22.98/0.6192 27.41/0.7040 28.73/0.8105 29.32/0.8140 29.79/0.8315

Urban100 | 29.38/0.8633 28.61/0.8148 27.64/0.7681 25.55/0.7013 27.54/0.7715 27.33/0.8425 28.77/0.8511 28.98/0.8619

Spatial CBSD68 28.44/0.8263 26.98/0.7446 26.13/0.6918 23.72/0.6320 26.15/0.6894 27.43/0.7954 28.31/0.8164 28.51/0.8250

Gaussian MCMaster | 29.12/0.8047 27.52/0.7231 26.64/0.6678 23.49/0.5728 26.48/0.6439 27.82/0.7571 29.57/0.8256 29.01/0.8095
o —50 Kodak24 29.08/0.8149 27.06/0.7063 26.17/0.6480 22.84/0.5807 26.26/0.6520 28.00/0.7854 28.65/0.7915 29.13/0.8128

Urban100 28.56/0.8438 27.38/0.7740 26.47/0.7268 24.78/0.6688 26.41/0.7302 26.77/0.8224 28.12/0.8364 28.37/0.8483

CBSD68 29.89/0.8731 24.03/0.6261 23.67/0.6045 25.67/0.6941 23.99/0.6064 27.69/0.8024 29.21/0.8425 29.36/0.8477
Poisson MCMaster | 30.88/0.8628 24.94/0.6627 24.45/0.6460 25.78/0.6939 24.81/0.5906 28.42/0.7224 30.33/0.8542 30.38/0.8565
a =25 Kodak24 30.77/0.8655 23.94/0.5605 23.58/0.5406 25.96/0.6440 23.94/0.5471 28.28/0.7796 30.08/0.8359 30.30/0.8440
Urban100 29.44/0.8840 23.61/0.6537 23.24/0.6390 25.30/0.7044 23.65/0.6395 26.85/0.8125 28.87/0.8724 28.94/0.8762

CBSD68 28.68/0.8457 21.36/0.5149 21.27/0.4988 23.53/0.6172 21.65/0.5023 25.79/0.7141 28.15/0.8153 28.37/0.8243
Poisson MCMaster | 29.80/0.8429 22.27/0.5816 22.11/0.5725 23.59/0.6322 22.48/0.5163 26.59/0.6416 29.44/0.8355 29.54/0.8398
a =30 Kodak24 29.56/0.8382 21.16/0.4448 21.09/0.4321 23.88/0.5636 21.49/0.4376 26.04/0.6685 29.03/0.8068 29.30/0.8213
Urban100 28.22/0.8614 21.02/0.5664 20.94/0.5574 22.87/0.6267 21.39/0.5590 25.25/0.7341 27.80/0.8517 27.94/0.8596

Salt CBSD68 31.96/0.8900 26.63/0.7968 25.51/0.7654 25.89/0.7788 26.50/0.7727 30.49/0.8623 34.94/0.9355 34.39/0.9256

& MCMaster | 31.90/0.8633 25.51/0.7606 25.00/0.7420 25.33/0.7462 25.75/0.7149 30.10/0.7976 33.81/0.9059 33.13/0.8948
Pepper Kodak24 32.62/0.8805 26.97/0.7764 25.75/0.7402 26.18/0.7547 26.92/0.7536 31.16/0.8619 35.54/0.9244 35.13/0.9168
d=0.012 Urban100 31.50/0.9009 26.05/0.8146 25.15/0.7923 25.62/0.7993 26.48/0.8030 29.08/0.8802 33.36/0.9290 32.94/0.9229

Salt CBSD68 30.85/0.8700 25.18/0.7518 24.23/0.7174 24.57/0.7256 25.13/0.7269 30.13/0.8537 34.29/0.9285 33.84/0.9191

& MCMaster | 30.83/0.8377 24.09/0.7094 23.69/0.6878 24.01/0.6883 24.41/0.6679 29.68/0.7856 33.05/0.8953 32.79/0.8897
Pepper Kodak24 31.48/0.8593 25.43/0.7249 24.42/0.6850 24.78/0.6932 25.47/0.7010 30.82/0.8532 34.91/0.9171 34.58/0.9102
d=0.016 Urbanl00 30.57/0.8846 24.66/0.7730 23.89/0.7479 24.36/0.7537 25.13/0.7618 28.76/0.8713 32.87/0.9252 32.53/0.9191

CBSD68 31.81/0.9038 29.72/0.8308 28.88/0.8100 29.15/0.8277 29.32/0.8143 29.91/0.8752 31.17/0.8910 31.16/0.8897

Speckle ~ MCMaster | 32.28/0.8703 30.32/0.8156 29.17/0.7946 28.89/0.8003 29.87/0.7573 30.47/0.8090 31.77/0.8798 31.73/0.8785
02 =0.02 Kodak24 32.69/0.9048 30.34/0.8173 29.39/0.7907 29.73/0.8129 30.04/0.8035 30.65/0.8739 31.94/0.8836 31.96/0.8828
Urban100 30.94/0.9043 28.42/0.8130 27.50/0.7930 28.22/0.8100 28.03/0.7959 28.60/0.8832 30.39/0.8981 30.31/0.8977

CBSD68 30.49/0.8863 26.68/0.7546 25.98/0.7363 26.84/0.7668 26.47/0.7440 29.00/0.8509 29.97/0.8697 30.03/0.8712

Speckle ~ MCMaster | 31.30/0.8578 27.19/0.7492 26.29/0.7325 26.82/0.7526 27.03/0.6946 29.69/0.7774 30.92/0.8672 30.93/0.8667
02 =0.03 Kodak24 31.40/0.8878 27.06/0.7232 26.21/0.6947 27.29/0.7382 26.86/0.7100 29.74/0.8479 30.77/0.8619 30.89/0.8656
Urban100 29.69/0.8889 25.33/0.7398 24.68/0.7256 25.86/0.7529 25.24/0.7300 27.65/0.8466 29.30/0.8840 29.28/0.8852

CBSD68 30.91/0.8930 27.43/0.7713 27.03/0.7476 28.44/0.8090 27.14/0.7372 29.08/0.8710 30.27/0.8701 30.32/0.8707
Mixture MCMaster | 31.62/0.8664 27.88/0.7494 27.53/0.7306 28.54/0.7707 27.61/0.7137 29.85/0.8104 31.05/0.8606 31.06/0.8610
Level 1 Kodak24 31.72/0.8874 27.66/0.7296 27.26/0.7053 29.03/0.7872 27.44/0.6976 29.91/0.8663 31.00/0.8627 31.11/0.8658
Urban100 30.40/0.8928 27.13/0.7692 26.73/0.7482 28.37/0.8091 26.98/0.7539 27.97/0.8799 29.77/0.8794 29.77/0.8798

CBSD68 30.31/0.8816 25.86/0.6960 25.46/0.6668 27.42/0.7623 25.62/0.6582 28.44/0.8545 29.68/0.8576 29.76/0.8597
Mixture MCMaster | 31.07/0.8537 26.43/0.6856 26.05/0.6658 27.48/0.7240 26.18/0.6583 29.36/0.8011 30.58/0.8499 30.61/0.8505
Level2 Kodak24 31.15/0.8769 25.96/0.6414 25.57/0.6126 27.97/0.7321 25.77/0.6073 29.22/0.8446 30.39/0.8486 30.58/0.8557
Urban100 29.81/0.8834 25.63/0.7060 25.21/0.6825 27.31/0.7668 25.48/0.6918 27.47/0.8645 29.17/0.8691 29.23/0.8711

CBSD68 29.21/0.8569 23.20/0.5652 22.93/0.5375 25.11/0.6519 23.16/0.5332 26.95/0.7905 28.69/0.8338 28.83/0.8398
Mixture MCMaster | 30.01/0.8264 23.77/0.5665 23.56/0.5510 25.24/0.6294 23.72/0.5367 27.99/0.7488 29.71/0.8269 29.78/0.8298
Level 3 Kodak24 30.08/0.8537 23.18/0.5028 22.92/0.4750 25.49/0.6054 23.16/0.4745 27.50/0.7634 29.51/0.8292 29.70/0.8375
Urban100 28.70/0.8632 23.03/0.5976 22.78/0.5766 24.98/0.6720 23.07/0.5857 26.29/0.8093 28.18/0.8503 28.29/0.8550

Denoised Kernel Map

e

Gaussian

Poisson

Mixture

Spatial Gaussian
(o = 45)

Salt&Pepper Speckle

Real-World

I 0000 O IS0 O BT 0000 IS0 B0 B 0000 I 0

Figure A2. Visualizations of predicted kernel maps across diverse noise types. For each noise condition, we display the ground-truth (GT),
noisy input, denoised output, and the predicted kernel map. Red dots in the Noisy and Denoised columns indicate reference pixels used to
visualize the corresponding denoising kernels. All kernel maps are normalized to sum to one, functioning as adaptive averaging filters.

Gaussian
(o =50)

Spatial
Gaussian

] —— —— | oe— | e—
0100 0150 0200 0250 (i 01000200 0300 0400 0300 i ool0 o020 0300

Figure A3. Comparison of results illustrating how denoising kernels and denoised images evolve through iterations, along with varying
degradation types and levels on the CBSD68 [61] dataset. Please zoom in for a more detailed comparison.

Gaussian
(o = 50)

Gaussian
(o = 55)

o0 o120 0140

Figure A4. Comparison of results illustrating how denoising kernels and denoised images evolve through iterations, along with varying
degradation types and levels on the Urban100 [25] dataset. Please zoom in for a more detailed comparison.

SIDD
[0000-0028]

| —

0200 0.400 0600 0800 | oo o0 o0 ol

)
008001000120 0140 |} 0050 0075 0100 0125 0.150

1
1)

{ 1 }

SIDD+
[0007]

—) - oa——) —) E———) > ——)
0200 0400 0600 0800 {i 0100 0110 0120 0130 0.140 i 0100 0200 0300 0400 0100 0120 0140 0100 0200 0300 0100 0110 0120 0130 0100 0120 0140 0160

Figure A5. Comparison of results illustrating how denoising kernels and denoised images evolve through iterations, along with varying
degradation types and levels on the real-world SIDD [1] and SIDD+ [3] dataset. Please zoom in for a more detailed comparison.

Noisy ClipDenoising Restormer

CODE MaskedDenoising

Poisson

20.99/0.468 25.74/0.6009 32.41/0.8572 Inf./1.000

Speckle

21.04/0.2923 23.9/0.4372

Mixture
(Level4)

(PSNR1/SSIM?1) 29.14/0.8415 21.16/0.3193 21.04/0.2923 23.9/0.4372 21.27/0.2936 25.97/0.6691

29.63/0.8541 Inf./1.000

Figure A6. Qualitative results of denoising performance on synthetic OOD noise in terms of PSNR1/SSIM1. During training, none of the
methods are exposed to the noise types present in the test set. Please zoom in for a more detailed comparison.

Noisy ClipDenoising Restormer CODE MaskedDenoising Ours GT

(=]
a
g
»n
(PSNR1/SSIMT) 29.51/0.6699 28.67/0.5998 27.43/0.5531 28.15/0.6249 32.15/0.9079 Inf./1.000
+
(=]
a
g
»n
(PSNR1/SSIMT) 36.87/0.8849 25.94/0.622 35.76/0.8531 28.66/0.6665 37.11/0.9112 Inf./1.000
o)
>
=
o
=%
(PSNR1/SSIM?T) 32.43/0.7153 27.52/0.6942 38.81/0.9201 35.61/0.8253 41.26/0.9778 Inf./1.000
£
<
V4
(PSNR1/SSIM?T) 35.21/0.9292 22.72/0.7145 35.65/0.9343 33.39/0.9468 37.35/0.9714 Inf./1.000

Figure A7. Qualitative results of denoising performance on real-world OOD noise in terms of PSNR1/SSIM?. During training, none of the
methods are exposed to the noise types present in the test set. Please zoom in for a more detailed comparison.

7 5 SN
CBSD68_260058
(Spatial Gaussian)

CBSD68_ 126007
(Salt&Pepper)

N\ =
CBSD68_302008
(Gaussian)

CBSD68_189080 v bathroom2
(Mixture Noise) (Monte Carlo)

1
CBSD68_14037 CBSD68_119082
(Poisson) (Speckle)

Figure A8. The original clean image and cropped region-of-interest (ROI) from the CBSD68 [61] and Monte Carlo rendering [15] dataset
used for the qualitative evaluation of synthetic noise removal.

	Introduction
	Appendix
	Details Regarding Test Noise
	Additional Ablation Studies
	DIC Algorithm
	Additional Analysis on DIC
	Visualization of Predicted Kernels
	Additional Analysis on Iterative Method
	Additional Denoising Results

