
Learning 3D Scene Analogies with Neural Contextual Scene Maps

Supplementary Material

A. Method Details

A.1. Contextual Descriptor Fields

Network Architecture Contextual descriptor fields de-
scribed in Section 3.2 gather semantic and geometric in-
formation near query locations to summarize scene context
information. The contextual descriptor field consists of 6
transformer encoder layers [12, 44], and each encoder layer
contains multi-head attention models with 8 heads. For the
semantic embedding, we use a learnable embedding of size
32, and for the distance embedding, we use a multi-layer
perceptron (MLP) with a single hidden layer to produce an
embedding of size 32. In addition, the descriptor fields op-
erate on a lightweight scene presentation, where we sample
50 points per object in the scene point cloud using farthest
point sampling [14].

Training To train descriptor fields, we build a dataset
consisting of scene triplets for contrastive learning. For ob-
taining positive pairs, we replace each object in the source
scene with a randomly sampled object from another scene
sharing the same semantic labels. For negative pairs, we
add translation noise sampled from the uniform distribu-
tion U(−0.5, 0.5) and z-axis rotation noise with rotation
angles sampled from U(−90◦, 90◦). In addition, we uni-
formly sample 203 grid points from each object bounding
box and an equal number of points sampled near the object
surface as query points for training. For each object pair,
we associate each grid point via nearest neighbor matching
and surface point via Hungarian matching [24]. Then, dur-
ing training, we minimize the contrastive learning objective
(Equation 2) using the Adam [22] optimizer with a learning
rate 10−4 and query point batch size 4 for 104 epochs.

A.2. Affine Map Estimation

As explained in Section 3.3, we estimate large, global trans-
formations using affine maps. First, we combinatorially as-
sociate object pairs in scenes Stgt and Sref to extract ini-
tial sets of affine maps. Namely, the set of affine maps is
created by associating Northo uniformly sampled transforms
in SO(2) with translations between object pairs (otgt, oref)
with centroids (ctgt, cref). This can be formally expressed
as follows, {(Ainit, binit)} := {(Tortho,−Torthoctgt + cref)},
where Tortho ∈ SO(2). Here, we set Northo by combinatori-
ally associating Nrot = 4 uniformly sampled rotations with
Nrfl = 2 reflections along the x and y axes. From the ini-
tial set, we select Kcoarse affine maps with the smallest cost
specified in Equation 5.

Outlier Object Rejection Prior to gradient descent opti-
mization, we perform a simple filtering procedure to remove
outlier objects in the region of interest, i.e., objects that can-
not be matched to the reference scene. For each selected
affine map, we identify object instance matches between the
region of interest and the reference scene. To elaborate, we
create a distance matrix D ∈ RNRoI×NRef , where NRoI and
NRef are number of object instances in the region of interest
and reference scene respectively. The (i, j)th entry of the
distance matrix is initially set as the point cloud centroid
distance between the ith object in the region of interest after
affine map warping and the jth object in the reference scene.
We then assign infinity values to matrix entries where the
object semantic labels disagree. Finally, we perform Hun-
garian matching on D to find object instance matches, and
identify objects in the region of interest as outliers if the dis-
tance matrix value to the matched object is over a threshold
(which is set to 2.0 in all our experiments). After outlier
removal, we keep affine maps with the largest number of
inlier objects and optimize each affine map with gradient
descent.

A.3. Local Displacement Map Estimation
Given the estimated set of affine maps, our method finds lo-
cal displacement maps for fine-grained scene context align-
ments. To obtain local displacement maps, we first min-
imize Equation 6 with gradient descent, treating each lo-
cal displacement δ ∈ R3 as an independent vector. Then,
we find the radial basis function weights wk from Equa-
tion 4 to fit the optimized local displacements δopt. Here,
the basis functions are fit by minimizing the following equa-
tion [7, 45],

min
w

∑
δopt

∥dw(x;PRoI)− δopt∥2 (A.1)

+ λ

∫∫ ∑
i,j

(
∂2dw
∂xi∂xj

)2dxidxj , (A.2)

where dw(x;PRoI) =
∑

k wkϕ(∥x − pk∥) is the local dis-
placement map. To ensure smooth maps are resilient to
noise from outliers, we incorporate a regularization term
(Equation A.2) with a weighting parameter λ set to 0.5.

B. Additional Experimental Results

B.1. Comparison with Additional Baselines
We compare our method with additional baselines using vi-
sion foundation models. Recall in Section 4.1 we design



Metric Bijectivity PCP Chamfer Acc.

Threshold 0.25 0.50 0.15 0.20

Multi-view Semantic Corresp. (DeiT III [43]) 0.05 0.09 0.24 0.45
Multi-view Semantic Corresp. (MAE [18]) 0.04 0.08 0.23 0.45
Visual Feature Field (DeiT III [43]) 0.31 0.34 0.58 0.67
Visual Feature Field (MAE [18]) 0.50 0.56 0.70 0.80
Ours 0.70 0.73 0.71 0.76

Table B.1. 3D scene analogy comparison in manually collected
scene pairs in 3D-FRONT [16]. We test baselines with additional
vision foundation model features (DeiT III [43], MAE [18]).

Metric Bijectivity PCP Chamfer Acc.

Threshold 0.25 0.50 0.15 0.20

Ours w/o Semantic Emb. 0.50 0.55 0.68 0.81
Ours w/o Distance Emb. 0.67 0.70 0.69 0.76
Ours 0.70 0.73 0.71 0.76

Table B.2. Ablation study of the semantic and distance embed-
dings on manually collected scene pairs from 3D-FRONT [16].
We report the metric values at varying thresholds.

the multi-view semantic correspondence [13, 29] and vi-
sual feature field [49] baselines that exploit DINOv2 [29]
features for finding scene analogies. Here, we consider ad-
ditional baselines using different vision foundation models,
namely MAE [18] and DeiT III [43]. Table B.1 shows the
accuracies of predicted scene analogies in the manually col-
lected scene pairs in 3D-FRONT [16]. Our method con-
stantly outperforms the newly added baselines, suggesting
the effectiveness of the learned descriptor field features for
scene context reasoning.

B.2. Ablation on Semantic and Distance Embed-
dings

We conduct an additional ablation on using semantic and
distance embeddings for scene analogy estimation. Re-
call in Section 3.2 our context descriptor fields aggregate
semantics and distance information of keypoints near the
query point and produces semantic and distance embed-
dings. Table B.2 shows the scene map accuracy measured
from manually collected scenes in 3D-FRONT [16], where
optimal performance is achieved when both are used as in-
put. Omitting semantic embeddings results in a large per-
formance drop, highlighting the importance of encoding
nearby semantic information for effective scene analogy es-
timation.

B.3. Quantitative Evaluation of Sim2Real Map Es-
timation

We conduct a quantitative evaluation of Sim2Real map esti-
mation using 102 manually collected Sim2Real scene pairs
from 3D-FRONT [16] and ARKitScenes [6]. We compare
our method against the 3D Point Feature Field baseline,
which is the strongest performing baseline in Tables 1, 2.
As shown in Table B.3, our method outperforms the 3D

3D Point
Feature Field Ours

Chamfer Acc. 0.55 0.66

Table B.3. Quantitative evaluation of 3D scene analogy estimation
in manually collected Sim2Real scene pairs from 3D-FRONT [16]
and ARKitScenes [6] We report the Chamfer Accuracy at thresh-
old 0.15.

Figure B.1. Qualitative results of scene analogies found from our
method on object groups with varying cardinalities. We show re-
sults both for near-surface and open-space points.

Cardinality Identical Different Original

Chamfer Acc. 0.76 0.66 0.71

Table B.4. Quantitative evaluation of 3D scene analogy estima-
tion in object groups with identical or different cardinalities. We
report the Chamfer Accuracy at threshold 0.15 for manually col-
lected scene pairs in 3D-FRONT [16]. Compared to the original
metric reported in Table 1, our method shows consistent perfor-
mance amidst object group cardinality variations.

Point Feature Field baseline in Chamfer accuracy at thresh-
old 0.15.

B.4. Runtime Characteristics
We report the runtime for finding 3D scene analogies us-
ing neural contextual scene maps. As our method operates
using sparse keypoints, affine and local displacement map
estimation can quickly run on average 0.67s and 0.57s, re-
spectively.

B.5. Robustness Evaluation on Object Groups with
Different Cardinalities

Due to the outlier rejection explained in Section A.2 and
Section 3.3, our method can robustly estimate scene analo-
gies in scenarios where object group cardinalities differ. As
shown in Figure B.1, our method can estimate scene analo-



Metric
(Points Sampled per Object)

PCK
(50)

PCK
(100)

PCK
(200)

PCK
(400)

Scene Graph Matching 0.23 0.25 0.26 0.26
Multi-view Semantic Corresp. 0.09 0.09 0.10 0.10
Visual Feature Field 0.44 0.48 0.49 0.50
3D Point Feature Field 0.50 0.54 0.55 0.56
Ours 0.68 0.73 0.75 0.76

Table B.5. Quantitative comparison of scene analogies in the pro-
cedurally generated scene pairs from 3D-FRONT [16]. We mea-
sure percentage of correct points (PCP) at threshold 0.25 using
varying number of points samples from the region of interest PRoI.
Compared to the PCK metric measured with 400 points sampled
per object (which is mainly used for the experiments), our method
performs stably amidst varying number of point samples.

gies for cases when (i) the RoI includes objects not present
in the reference scene (Figure B.1 top) and (ii) the reference
scene includes objects not present in the target scene (Fig-
ure B.1 bottom). We further report the accuracy of the esti-
mated maps for scene pairs with object groups having iden-
tical / different cardinalities in Table B.4, where our method
performs constantly in both cases.

B.6. Performance Analysis with Respect to the
Number of RoI Points

As specified in Section C.4, we sample 400 points per each
object in the RoI for estimating and evaluating scene analo-
gies. In this section we evaluate map estimation perfor-
mance with respect to the number of RoI points. As shown
in Table B.5, our method constantly outperforms the base-
lines under RoI point variations. By holistically aligning
descriptor fields using smooth maps, our method can attain
robustness against individual point locations or point sam-
pline rates and exhibit consistent performance.

B.7. Long Trajectory Transfer Comparison
In Figure B.2 and Figure B.3 we compare our method
against the baselines in long trajectory transfer explained
in Section 4.2. Recall to prevent collisions from directly
applying scene maps on long trajectories, we proposed se-
lectively mapping waypoints and interpolating the trans-
ferred waypoints via classical path planning (in our case the
A* algorithm [17]). Note the scene maps are obtained by
setting the objects near the waypoints as the region of in-
terest. For baselines that only output object surface point
matches (scene graph matching, multi-view semantic cor-
respondence), we interpolate object surface matches from
the baselines to open space using thin plate spline interpo-
lation [7, 45] and find waypoint transfers. For cases where
the A* algorithm fails to find a path due to inaccurate way-
point transfer, we directly use the interpolated map to trans-
fer short trajectory fragments formed from the failed set of
waypoints. A similar approach is taken for field alignment-

based methods (visual feature field, 3D point feature field),
while we skip the interpolation process as the output is al-
ready a continuous map.

As shown in Figures B.2 and B.3, our method can accu-
rately place waypoints to the coherent location in the refer-
ence scene, resulting in long trajectory transfers respecting
scene context. For example, our method can preserve the
loop structure in Scene 4 or the ribbon-like structure in
Scene 5 while placing all the waypoints at contextually
similar locations. On the other hand, the baselines often
fail to perform appropriate waypoint transfer, resulting in
penetrations or misplacements of the transferred trajectory.
Based on the descriptor field that distinguishes contextual
information from geometry and semantics, our method can
effectively handle waypoint transfers in various scenes.

B.8. Trajectory Transfer Using Multiple Regions of
Interest

In this section we demonstrate the possibility of using our
method for transferring trajectories by using multiple re-
gions of interest. For long trajectories where a single scene
analogy may be difficult to find, our method can instead
transfer a sparse set of waypoints and use classical path
planning [17] for interpolation. Given a target scene seg-
mented into multiple RoIs as shown in Figure B.4, we set
waypoints as sampled points in the input trajectory within
each RoI. Note such coarse segmentations can be performed
using scene graph clustering [21, 23] or vision language
models [1, 10, 25].

We then find scene analogies for multiple RoIs and holis-
tically align them. To account for symmetry ambiguities
(e.g., table + 4 chair RoI in Figure B.4), for each RoI we
have our method to output the top-5 maps with the smallest
cost (Equation 6), which results in combinations of scene
maps. Note we still apply the validity threshold ρvalid ex-
plained in Section 3.3 to filter invalid mappings, which re-
sults in a relatively small number of mappings per RoI.
Given a scene with NRoI number of RoIs, this procedure
results in at most 5NRoI possible combinations of mappings.

Next, we choose the optimal combination via a sim-
ple criterion based on isometry preservation [4, 30]. Here
we take inspiration from prior works in 3D surface map-
ping [4, 30] that often impose isometry constraints such that
the local geometric structure is preserved under non-rigid
deformations. To elaborate, let Prand ∈ RNrand×3 be a set of
randomly sampled points from the multiple regions of in-
terest, and the distance matrix Drand ∈ RNrand×Nrand whose
(i, j)th entry contains the euclidean distance between the ith

and jth points. Similarly, for an arbitrary map combina-
tion, let Ptransform be the transformation result of Prand under
the map combination and Dtransform the distance matrix. The
isometry cost is then defined as the Frobenius norm between
the distance matrices, namely ∥Drand−Dtransform∥F . We aim



Figure B.2. Long trajectory transfer comparison against the scene graph matching and multi-view semantic correspondence baselines in
3D-FRONT [16].

to find the combination with a small isometry cost, where
we employ a simple greedy approach. Given a randomly
initialized combination, we sequentially update the map as-
sociated with each RoI to the one that produces a smaller
isometry cost among the top-5 (or lower due to filtering) es-
timated maps. This process is repeated for a fixed number
of iterations, and we use the final map combination to pro-
duce long trajectory transfers. While the search process is

quite simple, we find this method to work well for scenes
with a moderate number of RoI segments (NRoI < 5).

Finally, we transfer each waypoint using the mapping
found for the associated RoI, and interpolate between the
transferred waypoints using classical path planning [17]. As
shown in Figure B.4, the proposed method can align multi-
ple scene analogies and produce a coherent long trajectory
transfer spanning over the entire 3D scene. Nevertheless,



Figure B.3. Long trajectory transfer comparison against the field alignment-based baselines (visual feature field, 3D point feature field) in
3D-FRONT [16].

devising a more scalable and principled approach to align
multiple scene maps originating from different RoIs is left
as future work.

C. Experimental Setup Details

C.1. Baselines
In this section, we elaborate on the implementation details
of the baselines compared against our method. As the 3D
scene analogy task is new, we tailor existing 3D scene un-
derstanding pipelines to our task and introduce four baseline
approaches capable of outputting dense scene maps.



Figure B.4. Visualization of long trajectory transfer on 3D-
FRONT [16] scene pairs using scene analogies from multiple re-
gions of interest. We use the estimated maps to transfer waypoints,
and apply traditional path planning [17] to obtain long trajectories
spanning the entire 3D scene. We denote the waypoints as gray
dots, and the estimated trajectories as color-coded spheres.

Figure C.5. Frontal view renderings of objects in 3D-FRONT [16],
used for CLIP [35] and sentence embedding [36] feature extrac-
tion.

Scene Graph Matching The scene graph matching base-
line builds a 3D scene graph [2] representing each object as
nodes and finds affine transformations to align the graphs.
First, we build scene graphs in a rule-based manner fol-
lowing Jia et al [20], where we use object bounding box
intersections to determine scene graph edge types. Then,
given a pair of 3D scene graphs Gtgt,Gsrc for the target and
reference scene, we list all subgraphs in Gref and compare
them against the subgraph containing the region of interest
in Gtgt. Here, we measure similarities between subgraphs
using the Jaccard coefficient introduced by Wald et al [47].
After retrieving the closest subgraph in Gref to the region of
interest, we apply Hungarian matching [24, 52] between the
subgraph nodes by using object semantic labels and adja-
cent edge labels as node features. Finally, similar to Sarkar
et al. [39], we find an affine transformation from the node
matches and deduce the final point-level alignment by per-

forming iterative closest points (ICP) [3] separately for ob-
ject point clouds associated with each node match.

Multi-view Semantic Correspondence The multi-view
semantic correspondence baseline renders scenes at mul-
tiple views and operates based on 2D matches from vi-
sion foundation models [13]. To elaborate, we sample
Nrender = 5 views from virtual spheres encompassing Stgt
and Sref [48, 54], and extract DINOv2 [29] features for each
view. Then, we exhaustively match N2

render image pairs us-
ing the extracted features [13], and lift each 2D match to
3D via back-projection. Using the 3D matches, we ob-
tain object-level matches by having each 3D match vote
for an object pair. In this phase, for each object in the re-
gion of interest, the object in the reference scene with the
largest amount of votes is selected. As the last step, we
estimate affine transforms using the matched object cen-
troids followed by iterative closest points (ICP) [3] to get
the point-level alignments. Note that while it is possible
to directly use the 3D matches and interpolate them to get
point-level matches, we find the DINOv2 [29] descriptors
to be quite noisy for obtaining fine-grained matches be-
tween object groups. Therefore, our baseline implemen-
tation mainly uses the features for object-level matching,
which we empirically find to be more effective.

Visual Feature Field Instead of lifting 2D matches, the
visual feature field baseline directly finds smooth scene
maps by aligning vision foundation model features in 3D.
The baseline first renders Nrender = 5 views from virtual
spheres encompassing the input scenes, and extracts DI-
NOv2 [29] features. Next, the baseline computes multi-
view aggregated features at each 3D keypoint in Stgt and
Sref. Here, the method projects each 3D keypoint to the
rendered views and extracts keypoint features via bilinear
interpolation, and averages the Nrender features. For an ar-
bitrary query point, we compute features by using distance-
weighted interpolation as in Wang et al. [41, 49]. In this
step, we aggregate features by considering keypoints within
radius r from the query point, where the radius values are
set identical to our method. Finally, the baseline applies
the coarse-to-fine map estimation from Section 3.3 to ob-
tain scene analogies.

3D Point Feature Field Similar to the visual feature field
baseline, the 3D point feature field interpolates keypoint
features to obtain features at arbitrary locations, but uses
3D keypoint descriptors [11] instead of vision foundation
models. For feature extraction, we use PointNet [31, 32]
containing Vector Neuron layers [11] that is pre-trained on
the ModelNet40 [50] dataset. Here we use the rotation-
invariant embeddings obtained from the last layer of the
Vector Neuron [11] encoder prior to max pooling. Given



Figure C.6. Qualitative sample of scene pairs for evaluation. The
blue box denotes the common object groups present both in the
target and reference scenes.

the 3D keypoint features, we obtain features at arbitrary lo-
cations via distance-weighted interpolation [49], and align
the keypoint-based fields using our coarse-to-fine estima-
tion scheme.

C.2. Foundation Model Features for Ablation Study
In Section 4.1.2, we demonstrate scene analogy estima-
tion using vision and language foundation model features,
namely CLIP [35] and sentence embeddings [12, 36]. Here
we elaborate on the details of the experiment. For CLIP
feature extraction, we first render frontal views of 3D-
FRONT [16] objects as shown in Figure C.5 and extract
CLIP feature embeddings. The embeddings are then used
in place of the semantic label embedding introduced in Sec-
tion 3.2. For sentence embedding extraction, we first ap-
ply an off-the-shelf image captioning method on each of
the object renderings in 3D-FRONT [16]. Then, we extract
sentence embeddings for each of the image captions, and
supply them as input to the descriptor fields in place of the
semantic embeddings.

C.3. Scene Pair Preparation for Evaluation
We elaborate on the scene pair preparation process for eval-
uating scene analogies in Section 4.1. As shown in Fig-
ure C.6, we prepare two types of data, namely procedurally
generated and manually collected scene pairs.

Procedurally Generated Scene Pairs Recall these scene
pairs contain pseudo ground-truth annotations for evalu-
ating point-level accuracy of scene analogy estimations.
For each scene, we first randomly select an object and its
k-nearest neighbors (where k is randomly sampled from
{2, . . . , 4}). The points sampled from the selected objects
are used as the region of interest PRoI. Then, for objects not
selected, we either randomly remove them by a probability
of 0.5 or apply pose perturbation. Here translation noise is
sampled from the uniform distribution U(−0.05, 0.05) and
rotation noise is obtained from the set of z-axis rotations
with rotation angles sampled from U(−10◦, 10◦). Next,
we randomly add Nadd objects to open spaces in the scene
(where Nadd is sampled from U(2, 5)). In this step, we re-
trieve the scene in the evaluation dataset with the closest ob-

ject semantic label histogram, and select objects from that
scene for addition. The objects are added by computing
an occupancy grid map of the current scene and randomly
choosing from collision-free locations [38]. Finally, we re-
place each object that has not been added or removed dur-
ing the previous steps with a randomly selected object of
the same semantic class, similar to training data generation
explained in Section A.1. The resulting procedurally gen-
erated scenes contain realistic object placements while pre-
serving meaningful object group structures for evaluation.

To compute pseudo ground-truth scene analogies for
PRoI, we uniformly sample points from the matching ob-
ject group in the procedurally generated scene. Then, we
apply Hungarian matching [24] between the two point sets,
which yields an injective matching for each point in PRoI
to the sampled points in the generated scene. We use this
matching result as the pseudo ground-truth for evaluation.
Using the entire process, we generate 997 scene pairs for
3D-FRONT [16] and 549 scene pairs for ARKitScenes [6].

Manually Collected Scene Pairs In addition to the pro-
cedurally generated pairs, we manually collect scene pairs
for evaluation. As obtaining point-level manual annotations
is costly and possibly inaccurate, we only make group-level
annotations for scene pairs. Specifically, for each scene pair
sharing common object groups, we annotate the instance
IDs of objects within the groups. We further annotate scene
pairs not containing any common object groups, which we
use for checking false positive scene analogies. We collect
120 scene pairs containing 20 pairs having no object group
matches for both 3D-FRONT [16] and ARKitScenes [6].

C.4. Evaluation Metric Details
Percentage of Correct Points (PCP) and Bijectivity PCP
The percentage of correct points (PCP) metric is mea-
sured for procedurally generated scene pairs having pseudo
ground-truth annotations to evaluate point-level accuracy
of scene maps, while the bijectivity PCP is a similar met-
ric to measure whether the estimated maps are invertible.
Both metrics are defined for points on the region of inter-
est: namely, we sample 400 points from each object point
cloud in the original scene using farthest point sampling
(FPS) [14].

Chamfer Accuracy The Chamfer Accuracy metric eval-
uates the group-level accuracy of scene analogy predictions
while penalizing false positive maps. Thus the metric ad-
ditionally provides evaluation on the false positive rates of
each method, i.e., whether the method falsely outputs map-
pings when the region of interest is unmatchable to the ref-
erence scene. In this section, we formally define the metric.
We first define the Chamfer distance for a pair of point sets



Figure C.7. Additional visualization of 3D scene analogies estimated in 3D-FRONT [16]. We show results both for near-surface and
open-space points.

Figure C.8. Additional visualization of 3D scene analogies estimated in ARKitScenes [6]. We show results both for near-surface and
open-space points.

X,Y ∈ R3 as follows

CD(X,Y ) =
∑
x∈X

min
y∈Y

∥x− y∥2 +
∑
y∈Y

min
x∈X

∥y − x∥2.

(C.3)

Given the object set ORoI = {PRoI
i } in the region of in-

terest, we perform nearest neighbor matching using object
centroid locations to obtain corresponding objects in the ref-
erence scene Omatch = {Pmatch

i }. Recall that the region of



Figure C.9. Additional visualization of Sim2Real and Real2Sim
scene analogies estimated between 3D-FRONT (Sim) and ARK-
itScenes (Real).

Figure C.10. Additional visualization of short trajectory transfer.
We shade the region of interest used for estimating scene analogies
in blue.

interest is defined as a union of object group points, namely
PRoI =

⋃
i

PRoI
i . For scene pairs containing matchable re-

Figure C.11. Additional visualization of object placement transfer.
We shade the region of interest used for estimating scene analogies
in blue.

gions, the Chamfer accuracy is then defined as follows,

CA(PRoI) =1[
1

|ORoI|
∑
i

CD(PRoI
i , Pmatch

i ) ≤ α], (C.4)

where α is a threshold parameter. For scene pairs labeled
as unmatchable, the Chamfer accuracy is set to 1 if no maps
are produced, and 0 otherwise.

D. Limitations and Future Work
While our new task of finding 3D scene analogies holds
practical applications for robotics and AR/VR, and our neu-
ral contextual scene maps can effectively find scene analo-
gies, we acknowledge several limitations that invite further
investigation in future work.

Handling Symmetries and Multi-modalities during
Evaluation We observe reflection symmetries to exist
quite often in object groups. For example, all object groups
shown in Figure C.7 exhibit such symmetries. While these
groups are symmetric in isolation, the ambiguities can be
mitigated by leveraging the context from neighboring scene



Figure D.12. Failure case of our method in scenes where the scene
analogy cannot be initially approximated with affine maps, leaded
to inaccurate estimations.

regions. To illustrate, the symmetric placements of the ta-
bles in the first row of Figure C.7 can be disambiguated by
considering the neighboring objects: one table is next to an-
other sofa, while the other table is next to a group of chairs.
A similar argument can be made for the cabinet-and-bed
group in the second row. Notice that our method correctly
recognizes this contextual information and produces maps
that respect nearby objects’ information.

Nevertheless, there also exist object groups where such
disambiguations are not effective: for the third row in Fig-
ure C.7, it is unclear from the neighboring scene contexts
whether the currently estimated map is the only possible
scene analogy. In this work we take a ‘lenient’ strategy for
handling reflection symmetries: we additionally measure
the PCP (percentage of correct points) metric for horizontal
and vertical reflections, and report the smallest value. How-
ever, we believe symmetries can be better handled by addi-
tionally labeling the symmetry type of object groups, for ex-
ample whether a group is reflection symmetric or can be dis-
ambiguated from nearby contexts, similar to how studies in
object pose estimation [5, 46] evaluate symmetric objects.
Obtaining additional labels and devising better symmetry-
aware metrics are left as future work.

In addition to object-wise symmetries, ambiguities can
arise in scenes containing higher-level symmetries, namely
multiple similar object groups. While in most cases a single
map can unambiguously match object groups, we acknowl-
edge that there are scenarios where multiple scene analo-
gies are detectable. For example, suppose one wants to find
scene analogies between the target scene in Figure C.6 and
a large room containing multiple bed-and-cabinet combina-
tions. Although our neural contextual scene maps currently
output a single mapping, it could be extended in such cases
to output the top-K mappings as in Section B.8, which will

lead to multiple scene analogy detections. Nevertheless, de-
vising metrics and annotating scene pairs for multi-modal
scene analogies is not straightforward, and thus is open to
future work.

Infidelity of Affine Map Estimation Although the affine
map estimation can effectively handle large, global trans-
formations, we identified cases where the initial affine map
estimation failed to find good solutions. These cases oc-
cur when scene analogies between two scenes cannot be
approximated with an affine map. An example is shown
in Figure D.12, where the relative locations of the toilet and
bathtub are swapped, and thus affine maps are insufficient
for aligning the scenes. Our method attempts to find an
affine map that best aligns the two scenes, yet errors occur
for regions near the sink (observe that the original points
are incorrectly mapped to flipped regions in the reference
scene). We expect a more flexible set of initializations, for
example piece-wise affine transforms [15], can be used in
place of the affine mapping procedure to solve such inac-
curacies. Alternatively, finding multiple partial maps (e.g.,
separately mapping toilet-bathtub and toilet-sink groups for
Figure D.12) and combinatorially aligning them as in Sec-
tion B.8 could also be a feasible solution.

Scene Pair Generation for Training While training de-
scriptor fields does not require densely labeled ground-truth
data and descriptor fields can function without semantic la-
bels during inference as demonstrated in Section 4.1.2, the
training process still requires the generation of positive and
negative scene pairs for contrastive learning [8, 9]. This
process demands semantic and instance labels of 3D scenes,
along with each object’s pose. Although such information
can be reliably extracted from modern 3D segmentation /
pose estimation algorithms [33, 34, 40, 53], we posit our
method to become more scalable if descriptor fields can be
learned without exploiting any synthetic scene pairs. One
interesting direction is to distill the knowledge of 3D scene
generation methods [28, 51] trained on large amounts of in-
door data for finding 3D scene analogies, similar to how im-
age generation models [37] have been adapted to semantic
correspondence tasks [42]. Finding more flexible learning
strategies to train descriptor fields is left as future work.

Handling Various Notions of “Correct” Correspon-
dences Inspired from prior works in semantic correspon-
dence [19, 26, 27, 55], our work considers points having
similar nearby object semantics and local geometry to be
correct matches, and the descriptor fields are trained to sup-
port this notion of “correctness”. We have demonstrated
in Section 4.2 that this definition is useful for tasks such
as trajectory transfer in robotics or object placement trans-
fer in AR/VR. Nevertheless, we acknowledge that multiple



definitions of ”correct” correspondences exist depending on
the task. For example, one may want to find scene analo-
gies based on other attributes such as affordance (e.g., map-
ping ‘sittable’ areas from one scene to another) or appear-
ance (e.g., matching furniture groups with a specific style).
Due to the modular design of our approach of separating
descriptor extraction and map estimation based on classical
optimization, our method can be flexibly modified to handle
such definitions of correctness. Specifically, one may train
new descriptor sets for different correctness definitions and
subsequently apply the map estimation process that does not
require training.

E. Additional Qualitative Results
We display additional qualitative results for 3D scene anal-
ogy estimation in 3D-FRONT [16] (Figure C.7), ARK-
itScenes [6] (Figure C.8), Sim2Real and Real2Sim (Fig-
ure C.9). Our method can produce accurate scene maps
in all cases, due to the coarse-to-fine estimation framework
which enhances robustness against input variations. We fur-
ther show additional qualitative results for short trajectory
transfer (Figure C.10) and object placement transfer (Fig-
ure C.11). The accurate scene analogy estimations can be
effectively exploited for downstream tasks in robotics and
AR/VR.
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Korhonen, and Ivan Vulić. TopViewRS: Vision-language
models as top-view spatial reasoners. In Proceedings of
the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1786–1807, Miami, Florida, USA,
2024. Association for Computational Linguistics. 3

[26] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Hyperpixel flow: Semantic correspondence with multi-layer
neural features. In ICCV, 2019. 10

[27] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Spair-71k: A large-scale benchmark for semantic correspon-
dence. ArXiv, abs/1908.10543, 2019. 10
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