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Detection Branch ‘Re—ID Branch‘ Detection ‘ Re-ID

| |Recall AP | mAP Top-1

Faster R-CNN [15] Ours 97.6 94.5| 61.8 90.8
RetinaNet [10] 97.8 94.6|619 91.0
MGN [19] 98.1 94.8|59.1 884
Ours PCB [18] 98.1 94.8| 60.4 90.1
NAE [3] 98.1 94.8| 60.0 89.1
SEAS [8] 98.1 94.8| 60.7 89.3
Ours ‘ Ours ‘ 98.1 94.8 ‘ 62.0 91.0

Table 1. Performance comparison of different detection and re-ID
models on PRW [23] dataset. Numbers in bold indicate the best
performance and underscored ones are the second best.

A. UNet Architecture in Diffusion Models

The UNet [17] architecture in diffusion models follows
a hierarchical structure, consisting of three primary stages:
down-stage, mid-stage, and up-stage. Each of these stages
is composed of multiple resolution levels, where feature
activations at the same resolution are processed by a se-
ries of specialized modules, including ResNet [6] blocks
(Res blocks), Vision Transformer [4] blocks (ViT blocks),
and up/down-samplers. These modules facilitate hierarchi-
cal feature extraction and enable efficient denoising by pro-
gressively reducing and restoring spatial resolution. The
down-stage is responsible for reducing the spatial resolu-
tion of feature activations while increasing their channel
depth. This stage comprises four resolution levels, with each
level containing a sequence of Res blocks, ViT blocks, and
down-samplers. The hierarchical nature of this stage allows
the model to capture low-level details in the early layers
and progressively extract more abstract and high-level fea-
tures as the resolution decreases. At the lowest resolution,
the mid-stage acts as a bottleneck layer that connects the
down-stage and up-stage. It consists of stacked Res and
ViT blocks, enabling feature refinement before upsampling
begins. The up-stage mirrors the down-stage by progres-
sively restoring spatial resolution through a sequence of
Res blocks, ViT blocks, and up-samplers. Skip connections
are established between corresponding levels in the down-
stage and up-stage, allowing the network to propagate fine-
grained details and prevent information loss.

B. Plug-and-Play Compatibility

In Table 1, we demonstrate competitiveness of our pro-
posed modules with other state-of-the-arts detection mod-
ules (Faster R-CNN [15] and RetinaNet [10]) and re-ID
modules (MGN [19], PCB [18], NAE [3], and SEAS [8]).

Text Prompts ‘ mAP  Top-1
"head", "upper body", "lower body", "foot" 61.5 90.5
"face", "torso", "legs", "foot" 61.7 90.8
"head", "shirts", "pants", "shoes" (Ours) 62.0 91.0

Table 2. Ablation study on different text prompts for SFAN
on PRW [23]. Using clothing-related prompts ("shirts" and
"pants™") provides more stable and distinctive cues, leading to
the best re-ID performance. Numbers in bold indicate the best per-
formance and underscored ones are the second best.

Our detection branch, guided by the proposed Diffusion-
Guided Region Proposal Network (DGRPN), achieves the
highest recall (98.1%) and AP (94.8%), outperforming
Faster R-CNN (97.6%, 94.5%) and RetinaNet (97.8%,
94.6%). This highlights the effectiveness of DGRPN in en-
hancing person localization using cross-attention maps. Ad-
ditionally, our re-ID branch consistently outperforms exist-
ing re-ID modules. While SEAS [8] achieves a mAP of
60.7% and Top-1 accuracy of 89.3%, our method further
improves the performance to 62.0% mAP and 91.0% Top-1
accuracy, demonstrating the benefits of our proposed mod-
ules in re-ID task.

C. Text prompt

To investigate the impact of different text prompts used
in Semantic-adaptive feature aggregation network (SFAN),
we conduct an ablation study by varying the predefined
body-region text embeddings, as shown in Table 2. We com-
pare three sets of prompts: (1) "head", "upper body",
"lower body",and "foot", (2) "face", "torso",
"legs", and "foot", and (3) "head", "shirts",
"pants", and "shoes". The results indicate that the
third configuration achieves the best performance, with the
highest mAP and Top-1 accuracy. This improvement is at-
tributed to the fact that "shirts" and "pants" explic-
itly correspond to clothing attributes, which are more sta-
ble and visually distinctive compared to "upper body"
or "torso", which may introduce ambiguity due to pose
variations and occlusions. Similarly, "shoes" provide a
clearer distinction than " foot ", as they often contain more
discriminative patterns (e.g., color or style differences) that
aid re-identification. In contrast, configurations (1) and (2)
show degraded performance, likely due to their reliance on
more generalized body descriptors that do not directly cap-
ture clothing details, leading to less discriminative spatial
attention maps. These findings confirm that selecting text
prompts that directly correspond to clothing-related features
improves the effectiveness of SFAN in enhancing person
representations.



Agg Net. \ Re-ID
| mAP  Top-1

Hyperfeature [11] 60.9 90.2
CWA [20] 60.6 90.8
Ours (MSFRN) 62.0 91.0

Table 3. Ablation study on various aggregation networks. Our pro-
posed MSFRN achieves superior mAP and Top-1 accuracy. Num-
bers in bold indicate the best performance and underscored ones
are the second best.

|  Detection | Re-ID
| Recall AP | mAP  Top-1

DINO[I3]VITB[4] | 752 704 | 335  66.1
DINO [13] ViT-L [4] 813 765 | 361 7238
DINO [I3] VIT-G[4] | 845 798 | 415  76.8
SD v1-5 [16] 978 948 | 613  89.7
SD v2-1 [16] 981 948 | 620 910

Backbone

Table 4. Comparison of different pre-trained frozen backbones in
our framework. We compare Stable Diffusion [14, 16] (SD) v1-5
and v2-1 with DINO [2, 13] models of varying sizes (Base, Large,
Giant) on the PRW [23] dataset. Numbers in bold indicate the best
performance and underscored ones are the second best.

D. Feature aggregation network

We investigate the impact of different aggregation net-
work architectures on person search performance, as shown
in Table 3. We compare our MSFRN against several ex-
isting networks, including Hyperfeature [11] (Res block-
based) and CWA [20]. Our proposed MSFRN, consisting
of a multi-scale frequency refinement strategy, achieves su-
perior performance with 62.0% mAP and 91.0% Top-1 ac-
curacy, outperforming existing methods. This improvement
stems from MSFRN’s ability to effectively preserve high-
frequency details while maintaining global feature coher-
ence, enabling the extraction of more discriminative iden-
tity representations.

E. Pre-trained Backbone Selection

In Table 4, we compare two different types of pre-
trained foundation models as our backbone: DINO [13],
trained via self-supervised learning, and Stable Diffusion
(SD) [16], trained through text-to-image generative mod-
eling. We compare against DINO considering its strong
performance in various visual recognition tasks. For fair
comparison, we carefully configure DINO’s feature extrac-
tion: the last layer token features are used for detection to
leverage high-level semantic understanding, while features
from the last seven layers are aggregated for re-ID. Our re-
sults show that SD significantly outperforms DINO variants
across all metrics. While DINO learns to align representa-
tions between teacher and student networks, SD learns to re-
construct the complete visual hierarchy through the denois-

Method | Re-ID

| mAP  Top-1
COAT+ 86.5 85.6
SeqNeXt 91.1 89.8
SeqNeXt+GFN | 92.0 90.9
SEAST 89.6 87.7
Ours 93.0 91.9

Table 5. Occluded re-ID performance comparison across differ-
ent methods on CUHK-SYSU [21]. Performance metrics using
occluded person queries, demonstrating the effectiveness of our
method under occlusion conditions. 7: Methods directly imple-
mented or reproduced by us.

ing process. The iterative denoising process of SD enables
the model to learn both fine-grained appearance details and
global structural information simultaneously, which natu-
rally aligns with both requirements of person search. This
comprehensive feature learning proves more effective than
the instance-level discrimination of DINO, as evidenced by
superior detection performance and re-ID accuracy.

F. Key Challenges in Person Search

Occluded person search. We show in Table 5 the ro-
bustness of our DiffPS to occlusion in person search. The
evaluation protocol consists of 187 occluded person queries
paired with a gallery of 50 images, where each query con-
tains significant occlusion to simulate real-world scenar-
ios. While occlusion poses a significant challenge in person
search due to incomplete visual information, our framework
achieves state-of-the-art performance (mAP = 93.0%, Top-1
= 91.9%) on the occluded person retrieval task. This supe-
rior performance under occlusion can be attributed to the
generative nature of diffusion models, which learn to re-
construct complete visual information through the denois-
ing process. This learned ability to recover missing or cor-
rupted visual details enables our model to maintain robust
person matching even when key body parts are occluded.

Small-scale person detection. Person search requires ac-
curate person detection across various scales. While ex-
isting state-of-the-art methods [1, 7, 8, 22] achieve strong
performance on medium and large-scale persons, detect-
ing small-scale persons remains a significant challenge. We
demonstrate in Fig. | our model’s superior capability in ad-
dressing this challenge. We define small-scale instances as
those whose bounding box areas fall within the bottom 25%
of all bounding box areas in the dataset. As shown in the
left of Fig. 1, our framework achieves superior performance
in small object detection (APgpa = 94.7%) compared to
existing methods. This strong performance on small in-
stances may stems from two key characteristics of diffu-
sion models: 1) the iterative denoising process inherently
requires the model to learn multi-scale feature representa-
tions, from fine details to global structures, making it partic-
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Figure 1. Qualitative and quantitative comparison of small person detection performance. Left: Quantitative comparison of APgmay scores
on the PRW [23] test set across different methods, showing our model’s superior performance in small person detection. Right: Visual
comparison between SeqNet [9], COAT [22], SEAS [8], and our method on a challenging scene from the PRW test set containing multi-
scale persons. Different colored boxes indicate detection results from each method.

| Method | Backbone | PRW | CUHK-SYSU

| | | Detection Re-ID | Detection Re-ID
(a) COAT ResNet50 93.3/96.0 53.3/87.4 88.3/91.6 94.2/94.7
(b) COAT SD v2-1 94.1/96.3 58.9/89.5 89.5/92.9 95.3/96.1
(c) SEAS ConvNeXt 94.3/97.6 60.5/89.5 90.0/93.6 97.1/97.8
(d) SEAS SD v2-1 94.5/97.5 60.8/90.1 90.3/93.9 97.3/97.7
(e) Baseline (B) SD v2-1 94.2/97.5 59.1/88.1 90.2/94.0 95.5/96.1
®) B+D SD v2-1 94.8 /98.1 59.2/88.3 90.9 /94.4 95.6/96.2
() | B+D+S SD v2-1 94.8/98.1 59.6/88.5 | 90.9/944 96.4/96.8
(h) | B+D+M SD v2-1 94.8/98.1 61.6/90.6 | 90.9/944 97.0/97.8
() B+D+M+S SD v2-1 94.8/98.1 62.0/91.0 | 90.9/944 97.8/98.4

Table 6. D: DGRPN, M: MSFRN, S: SFAN. Detection is evaluated by AP / Recall, and Re-ID by mAP / Top-1.

ularly effective at capturing small object features; 2) diffu-
sion models are trained on large-scale datasets with diverse
scene compositions, enabling them to learn robust repre-
sentations of objects at various scales and contexts. The
qualitative comparison in the right of Fig. 1 clearly demon-
strates this advantage. In a challenging scene with multi-
ple small persons against a cluttered background, our pro-
posed DiffPS demonstrates superior detection performance
on small-scale persons compared to existing methods. This
visual evidence indicates that the prior knowledge learned
through generative modeling is particularly beneficial for
challenging scenarios like small object detection, even with-
out task-specific fine-tuning.

G. Module Effectiveness

To rigorously validate the effectiveness of our proposed
modules beyond the impact of the backbone itself, we con-
duct experiments using the same diffusion backbone across
existing methods, as shown in Table 6. Specifically, rows
(b), (d), and (i) demonstrate that even when applying SD v2-

1 to existing frameworks, our method still achieves superior
performance. This indicates that our performance gains are
not simply due to the choice of a stronger backbone. Fur-
thermore, row (e) presents a baseline that utilizes the SD v2-
1 backbone without any of our proposed modules. Notably,
this baseline performs worse than existing methods, high-
lighting that the backbone alone is insufficient to achieve
state-of-the-art performance. From rows (e) to (i), we in-
corporate our proposed modules into the baseline, clearly
showing that each module contributes meaningfully to per-
formance improvement.

H. Shape Bias

To directly validate that MSFRN mitigates shape bias,
we conduct an experiment using the Cue-conflict [5]
dataset, which is specifically designed to test whether a
model relies more on shape or texture. As shown in Fig. 2,
this dataset contains images where the shape belongs to one
class, but the texture is replaced with that of a different
class. If the model predicts the label based on the shape,



w/o MSFRN: 73% w/o MSFRN: 67% w/o MSFRN: 58% w/o MSFRN: 61%
w MSFRN: 65% (-8%)  w MSFRN: 59% (-8%) w MSFRN: 47% (-11%)  w MSFRN: 58% (-3%)

Figure 2. Cue-conflict examples with shape/texture labels and
model prediction probabilities with and without MSFRN.

Model | Shape | 5 | AP | Recall

ResNet50 28.18 1] 943 97.6
+ MSFRN 26.32 3 94.7 97.9

SD v2-1 63.52 5| 948 98.1
+ MSFRN 58.28 7| 94.6 97.7

Table 7. Shape bias mitigation. Table 8. Ablation study on §
it means the model is biased toward shape information. For
example, in the first image of Fig. 2, where the shape cor-
responds to a dog and the texture to a clock, a shape-biased
model would classify it as a dog. Table 7 and Fig. 2 show
the shape classification accuracy with and without MSFRN.
Applying MSFRN reduces shape bias in both models, sug-
gesting its effectiveness in reducing shape reliance and en-
hancing focus on fine-grained textures.

1. Effect of 6.

We investigate the effect of the hyperparameter ¢ in our
Gaussian proposal mechanism within the Diffusion-Guided
Region Proposal Network (DGRPN). § controls the mini-
mum spatial extent of the Gaussian standard deviation used
to modulate attention-based proposals. As shown in our ab-
lation study on the PRW dataset, both overly small and large
¢ values degrade performance: small values fail to suppress
noisy or irrelevant regions, while large values over-smooth
the localization map, reducing precision. The best perfor-
mance is achieved at 6 = 5, which effectively balances pre-
cision and recall, leading to optimal detection performance.

J. Analysis on Feature Map

Layer-wise analysis We demonstrate feature characteris-
tics of different layers and modules within the UNet [17]
architecture through quantitative and qualitative analysis.
As shown in Tables 9 and 10, the up-stage features con-
sistently outperform their down-stage and mid-stage coun-
terparts across all metrics. While down-stage features show
moderate performance and mid-stage features demonstrate
notably degraded performance, up-stage features exhibit re-
markably superior performance, particularly in levels 2 and
3. The superior performance of up-stage features is fur-
ther validated through qualitative analysis, which also re-
veals how different modules at the same level complement

Layer | Detection |  Re-ID
| Recall AP | mAP Top-1

Down-stage LevelO Res0 954 91.1] 421 832
Down-stage LevelO ViTO 959 91.7| 433 84.1
Down-stage LevelO Res1 95.8 9151|449 835
Down-stage LevelO ViT1 95.6 813|443 84.0
Down-stage Level0 Downsampler | 95.1 91.1 | 424 825
Down-stage Levell ResO 96.0 824 | 436 83.1
Down-stage Levell ViTO 95.9 923|465 8438
Down-stage Levell Resl 96.2 927|473 849
Down-stage Levell ViT1 96.3 929 | 48.7 85.6
Down-stage Levell Downsampler | 94.6  90.7 | 39.6  80.1
Down-stage Level2 ResO 95.0 913|427 81.2
Down-stage Level2 ViTO 949 914|435 825
Down-stage Level2 Res1 949 915|435 813
Down-stage Level2 ViT1 953 921|419 81.6
Down-stage Level2 Downsampler | 91.1 832 | 9.6 433
Down-stage Level3 Res0 91.1 828 | 84 404
Down-stage Level3 Res1 900 81.7| 69 364
Mid-stage Res0 902 815| 64 337
Mid-stage ViTO 91 81.8| 64 34

Mid-stage Resl 90.5 81.6| 63 343

Table 9. Performance metrics for different layers in the down-stage
and mid-stage of UNet on the PRW [23] dataset. We evaluate dif-
ferent feature maps obtained from Vision Transformer [4] (ViT)
and ResNet [6] (Res) modules at each level. Each level contains
multiple ViT and Res modules arranged sequentially, with the ap-
pended number (e.g., ResO, ViTO) indicating their order within
that level. The downsampler represents feature maps from mod-
ules that reduce spatial resolution between adjacent levels. Num-
bers in bold indicate the best performance and underscored ones
are the second best.

each other. Figure. 3 shows that up-stage features from
ResNet [6] (Res) modules, especially at levels 2 and 3,
maintain more distinctive patterns than their down-stage
and mid-stage counterparts. This comprehensive analysis
through both quantitative metrics and qualitative visualiza-
tions demonstrates that upper-level features in the up-stage
possess strong discriminative power for person search.

Timestep-wise analysis We show in Fig. 4 how feature
representations evolve across different timesteps (7). At
t=0, features maintain clear semantic structure with pre-
cise person silhouettes, leading to optimal re-ID and detec-
tion performance. Features gradually degrade through inter-
mediate timesteps (1=100-400), with person silhouettes be-
coming increasingly abstract. Later timesteps (z=500-1000)
show severe degradation, with features becoming domi-
nated by noise and losing meaningful patterns. Figure 4
shows this progression in detail. This analysis reveals that
early timesteps (#=0-30) provide the most effective fea-
tures for re-ID and detection tasks, informing our optimal
timestep selection.



K. Limitation

In this work, we harness diffusion priors to person search
and demonstrate their effectiveness. Our DiffPS leverages
a pre-trained diffusion model as a large-scale foundation
model, which could raise concerns about computational
overhead. However, by adopting a frozen backbone, we
maintain fewer learnable parameters compared to recent
state-of-the-art models. Future research on efficient diffu-
sion models could further address computational consider-
ations while retaining our method’s advantages.

Layer | Detection |  Re-ID

| Recall AP | mAP Top-1
Up-stage LevelO ResO 883 765| 1.5 113
Up-stage LevelO Resl 89.5 783 | 1.6 122
Up-stage LevelO Res2 89.2 792 | 1.8 14.1
Up-stage LevelO Upsampler | 88.7 794 | 1.1 8.9
Up-stage Levell ResO 96.0 92.7| 41.6 80.9

Up-stage Levell ViTO query | 953 91.6 | 40.2  80.0
Up-stage Levell ViTO key 952 91.7| 406 79.6
Up-stage Levell ViTQ value | 954 51.8| 39.6 79.0
Up-stage Levell ViTO 953 915|377 79.0
Up-stage Levell Resl 96.1 927|449 82.6
Up-stage Levell ViT1 query | 958 92.6 | 423 81.2
Up-stage Levell ViT1 key 959 924|415 805
Up-stage Levell ViT1 value | 95.7 923 | 42.7 81.7
Up-stage Levell ViT1 959 926 40.7 80.6
Up-stage Levell Res2 96.0 92.8| 463 83.0
Up-stage Levell ViT2 query | 95.8 92.5| 464 83.6
Up-stage Levell ViT2 key 955 922|460 828
Up-stage Levell ViT2 value | 95.2 91.6| 458 82.8

Up-stage Levell ViT2 95.5 922|451 828
Up-stage Levell Upsampler | 96.8 93.7 | 394 80.5
Up-stage Level2 ResO 974 943|504 86.7

Up-stage Level2 ViTO query | 97.7 94.7 | 50.0 85.2
Up-stage Level2 ViTO key 97.5 945 | 48.7 843
Up-stage Level2 ViTO value | 97.2 943 | 485 852
Up-stage Level2 ViTO 972 943|473 84.1
Up-stage Level2 Resl 97.6 946 | 53.7 864
Up-stage Level2 ViT1 query | 97.6 945 | 53.6 859
Up-stage Level2 ViT1 key 97.6 945|523 857
Up-stage Level2 ViT1 value | 97.5 94.1 | 53.8 87.1
Up-stage Level2 ViT1 973 942|521 86.5
Up-stage Level2 Res2 974 944|535 879
Up-stage Level2 ViT2 query | 97.3 943 | 544 §87.3
Up-stage Level2 ViT2 key 97.8 945|535 86.5
Up-stage Level2 ViT2 value | 96.9 93.8 | 52.7 86.3

Up-stage Level2 ViT2 972 942|519 864
Up-stage Level2 Upsampler | 97.8 94.7 | 51.9 86.5
Up-stage Level3 ResO 974 941|522 864

Up-stage Level3 ViTO query | 98.0 94.7| 529 87.3
Up-stage Level3 ViTO key 98.1 948 | 53.1 877
Up-stage Level3 ViTO value | 974 940 53.1 87.0
Up-stage Level3 ViTO 97.1 936 | 47.1 8438
Up-stage Level3 Resl 97.7 943|520 86.2
Up-stage Level3 ViT1l query | 97.5 94.1 | 52.8 86.6
Up-stage Level3 ViT1 key 975 942|532 86.8
Up-stage Level3 ViT1 value | 97.5 94.0| 52.7 86.3
Up-stage Level3 ViT1 974 938 | 48.1 85.0
Up-stage Level3 Res2 97.1 936|482 852
Up-stage Level3 ViT2 query | 97.1 939 | 51.1 86.7
Up-stage Level3 ViT2 key 974 94.1| 515 86.0
Up-stage Level3 ViT2 value | 96.5 92.6 | 47.1 843
Up-stage Level3 ViT2 970 933|47.0 85.0

Table 10. Performance metrics for different layers in the up-stage
of UNet on the PRW [23] dataset. We evaluate feature maps from
Vision Transformer [4] (ViT) and ResNet [6] (Res) modules at
each level. Each level contains multiple ViT and Res modules in
sequence, with the appended number (e.g., ResO, ViTO0) indicat-
ing their order. For ViT modules, we analyze three attention-based
feature maps (query, key, and value) after their linear projections.
The upsampler represents feature maps from modules that increase
spatial resolution between adjacent levels. Numbers in bold indi-
cate the best performance and underscored ones are the second
best.
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Figure 3. Feature map visualization from Res [6] modules across different stages and levels of UNet [17]. The visualizations are generated
using PCA [12] on the output feature maps, with each row showing a different level and each column representing different res modules
within that level. The input image is shown at the top for reference. Colors indicate the intensity and pattern of feature activations, demon-
strating how feature representations evolve through different stages and levels of the network. (Best viewed in color.)
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Figure 4. Visualization of feature characteristics across different timesteps in the diffusion process. Visualization using PCA [12] of features
extracted from UNet [17] up-stage level 3 ViT [4] module at varying timesteps. The input image is shown at the top for reference. (Best
viewed in color.)
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