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In this supplementary material, we provide the follow-
ing.

• Sec. 1 Details of network structure.
• Sec. 2 Analysis for PPR10K Dataset.
• Sec. 3 Details of 2D slicing and LUT transform.
• Sec. 4 Additional quantitative and qualitative compar-

isons.

1. Details of Network Structure

In this section, we provide the details of our network struc-
ture as described in Tabs. 1 to 5. The backbone in Tab. 1
consists of five layers of a convolutional neural network
(CNN), with m set to 8, following previous work [6]. Each
generator in Tabs. 2 to 5 is composed of two fully connected
(FC) layers with the insight of rank factorization, which can
reduce the parameters and training difficulty [6, 10, 11].
The bilateral grid generator Hs(·) in Tab. 2 generates 2D
bilateral grids to replace 3D bilateral grids. We decide the
Ds = 17, K = 6 for fair comparison on spatial feature fu-
sion with SABLUT [6]. The weights and biases for 2D bi-
lateral grids are generated by the bilateral grid weight gener-
ator Hsw(·) in Tab. 3. We experimentally select the number
of hidden layers for the bilateral grid weight generator as
Msw = 8. Since three 2D bilateral grids replace a 3D bi-
lateral grid, the number of weights Nsw and biases Nsb for
each channel are 3 and 1, respectively.

The LUT generatorHt(·) in Tab. 4 generates the singular
value decomposition (SVD) components of 2D LUTs with
eight singular values Ns = 8 as described in the main pa-
per. Most of previous 3D LUT methods [6, 7, 9–12] have
Dt = 17 or Dt = 33 vertices. When we set Dt to 17,
our model does not achieve the desired performance, with
a PSNR of 25.54 dB on the photo retouch task on FiveK
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Figure 1. (a) and (b) are box plots of utilization rates on PPR10K
dataset [7] under different dimensions of LUT and bilateral grid.
Each color represents the dimension of LUT and bilateral grid. (c)
and (d) are LUT visualizations of average occurrence statistics on
each axis for PPR10K. The cells closer to yellow indicate more
frequently accessed vertices and the cells closer to blue indicate
less frequently accessed vertices.

[1]. Meanwhile, our method achieves a competitive perfor-
mance of 25.76 dB with Dt = 33 in the same task. We
decide to set Dt as 33, based on the above experiment. The
2D LUTs can be easily reconstructed by matrix multipli-
cation, as discussed in the main paper. The LUT weight
generator Htw(·) in Tab. 5 is similar to the bilateral grid
weight generator. The parameters of the LUT weight gen-
erator, Mtw = 8, Ntw = 3, and Ntb = 1, are decided for
the same reason as the bilateral grid weight generator.
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Table 1. Details of the backbone network
B(·) where Conv3 is 3 × 3 convolution block
(stride=2, padding=1), LR is LeakyReLU and
IN is instance normalization.

Layer Output Shape
Bilinear Downsample 3× 256× 256
Conv3 + LR+ IN m× 128× 128
Conv3 + LR+ IN 2m× 64× 64
Conv3 + LR+ IN 4m× 32× 32
Conv3 + LR+ IN 8m× 16× 16

Conv3 + LR 8m× 8× 8
Droupout (0.5) 8m× 8× 8

Average Pooling 8m× 2× 2
Reshape 32m

Table 2. Details of the bilateral grid genera-
tor Hs(·), where FC is a fully connected layer.
Ms, K, and Ds are the number of hidden lay-
ers, bilateral grids, and bilateral grid vertices,
respectively.

Layer Output Shape
FC Ms

FC K · 3 ·D2
s

Reshape K × 3×Ds ×Ds

Table 3. Details of the bilateral grid
weight generator Hsw(·). Msw is the
number of hidden layers. Nsw and
Nsb are the number of bilateral grid
weights and biases for each channel,
respectively.

Layer Output Shape
FC Msw

FC K · 3 · (Nsw +Nsb)
Reshape K × 3× (Nsw +Nsb)

Table 4. Details of the LUT generator Ht(·).
Mt, Dt and NS are the number of hidden lay-
ers, LUT vertices, and singular values, respec-
tively.

Layer Output Shape
FC Mt

FC 3 · 3 · (Dt ·NS +NS +Dt ·NS)

Reshape
U : 3× 3× (Dt ×NS)

S : 3× 3×NS

V : 3× 3× (Dt ×NS)

Table 5. Details of the LUT weight
generator Htw(·). Mtw are the num-
ber of hidden layers. Ntw and Ntb

are the number of LUT weights and
biases for each channel, respectively.

Layer Output Shape
FC Mtw

FC 3 · 3 · (Ntw +Ntb)
Reshape 3× 3× (Ntw +Ntb)

2. Analysis for PPR10K Datasets
We also conduct an analysis for PPR10K on utilization rates
and occurrence statistics. The utilization rate indicates how
many vertices of a 3D LUT are referenced compared to gen-
erated vertices for each image, like #referenced vertices

#generated vertices ×
100. The occurrence statistics are estimated by counting the
number of accesses for each vertex. The overall tendency is
similar to the results of the analysis for FiveK in the main
paper. Fig. 1a presents LUT utilization rate of PPR10K. The
rate of 3D LUT is very low, and 1D LUT is saturated. As
can be seen in Fig. 1c, the occurrence statistics are concen-
trated on the diagonal. Notably, the vertices near (1,1) and
(32,32) are accessed more frequently than other diagonal
vertices, compared to the FiveK dataset. The bilateral grid
has a broader distribution than LUT, but it also has a sim-
ilar tendency. The 3D bilateral grid is redundant, and the
1D bilateral grid is saturated, similar to the FiveK dataset,
as shown in Fig. 1b. The vertices access is concentrated on
as visualized in the first row and the thirty-second row in
Fig. 1d.

3. Details of 2D Slicing and LUT Transform
In this section, we provide a detailed description of the 2D
LUT Transform and 2D Slicing.

3.1. 2D LUT Transform
Fig. 2a illustrates the detailed operation of 2D LUT trans-
form Transformc

2D(X(c,x,y), T
2D) based on bilinear in-

terpolation, where T 2D ∈ {tcrg, tcrb, tcgb|c ∈ {r, g, b}} rep-
resents 2D LUTs andX(c,x,y) is the pixel value on (c, x, y).
The 2D LUT transform comprises the following three steps.

First of all, query points for 2D LUTs are found based on
input color values, which can be described as

Prg = (pr, pg) = (X(r,x,y), X(g,x,y)),

Prb = (pr, pb) = (X(r,x,y), X(b,x,y)),

Pgb = (pg, pb) = (X(g,x,y), X(b,x,y)),

(1)

where Prg, Prb, and Pgb are query points for tcrg , tcrb, and
tcgb, respectively.

Second, the bilinear interpolation is carried out to calcu-
late retrieved values ϕcαβ from tcαβ with αβ ∈ {rg, rb, gb}.
For the interpolation operation, we find the left and right
vertices of each query point on their axis. The left and right
vertices can be denoted as

plα = ⌊pα · (Dt − 1)⌋/(Dt − 1),

prα = plα + 1/(Dt − 1),

plβ = ⌊pβ · (Dt − 1)⌋/(Dt − 1),

prβ = plβ + 1/(Dt − 1),

(2)

where ⌊·⌋ is floor operator. The four adjacent points on a
2D LUT can be found as

V c,00
αβ = tcαβ(p

l
α, p

l
β),

V c,10
αβ = tcαβ(p

r
α, p

l
β),

V c,01
αβ = tcαβ(p

l
α, p

r
β),

V c,11
αβ = tcαβ(p

r
α, p

r
β).

(3)

The retrieved values can be calculated by bilinear interpo-



(a) Description of the 2D LUT transform

(b) Description of the 2D slicing

Figure 2. Detailed description of 2D LUT transform (a) and 2D Slicing (b) based on bilinear interpolation.

lation, which can be formulated as

ϕcαβ,(x,y) = (1− δα) · (1− δβ) · V c,00
αβ

+ δα · (1− δβ) · V c,10
αβ

+ (1− δα) · δβ · V c,01
αβ

+ δα · δβ · V c,11
αβ ,

(4)

where δα = (pα−plα)/(prα−plα) and δβ = (pβ−plβ)/(prβ−
plβ).

Finally, the weighted sum is conducted to calculate out-



put values Φc of a 2D LUT transform like

Φc
(x,y) = wc

rg · ϕcrg,(x,y)
+ wc

rb · ϕcrb,(x,y)
+ wc

rb · ϕcrb,(x,y) + bc,

(5)

where wc
rg , wc

rb, wc
gb, and bc are generated weights by LUT

weight generator Htw(·) in Sec. 1.

3.2. 2D Slicing
As can be seen in Fig. 2b, the 2D slicing operation
Slicing

c′k
2D(X,G2D) is similar to the LUT transform since

both operations are based on bilinear interpolation. First,
we find the query points based on the spatial coordinate
(x, y) and the corresponding color value on each channel
of the image, which can be denoted as

Pxy = (px, py) = (x′, y′),

Pxc = (px, pc) = (x′, X(c′
k′ ,x,y)

),

Pyc = (py, pc) = (y′, X(c′
k′ ,x,y)

),

(6)

where x′ = x/(W − 1), y′ = y/(H − 1) and k′ =
mod(k, 3).

Second, the bilinear interpolation is also carried out on
2D bilateral grids gc

′
k

αβ for retrieved values ψc′k
αβ with αβ ∈

{xy, xc, yc}. The neighboring vertices and adjacent points
of each query point for slicing can be defined as

plα = ⌊pα · (Ds − 1)⌋/(Ds − 1),

prα = plα + 1/(Ds − 1),

plβ = ⌊pβ · (Ds − 1)⌋/(Ds − 1),

prβ = plβ + 1/(Ds − 1),

(7)

V
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c′k
αβ(p

l
α, p

l
β),

V
c′k,10
αβ = g

c′k
αβ(p

r
α, p

l
β),

V
c′k,01
αβ = g

c′k
αβ(p

l
α, p

r
β),

V
c′k,11
αβ = g

c′k
αβ(p

r
α, p

r
β).

(8)

The retrieved values by slicing can be formulated as

ψ
c′k
αβ,(x,y) = (1− δα) · (1− δβ) · V

c′k,00
αβ

+ δα · (1− δβ) · V
c′k,10
αβ

+ (1− δα) · δβ · V c′k,01
αβ

+ δα · δβ · V c′k,11
αβ .

(9)

Finally, output values Ψc′k of 2D slicing can be calcu-
lated through a weighted sum with generated weights by

the bilateral grid weight generator Hsw(·) in Sec. 1. The
weighted sum can be denoted as

Ψ
c′k
(x,y) = w

c′k
xy · ψc′k

xy,(x,y)

+ w
c′k
xc · ψc′k

xc,(x,y)

+ w
c′k
yc · ψc′k

yc,(x,y) + bc
′
k .

(10)

3.3. Slicing and LUT Transform
Using notations in previous sections, the cache-effective
slicing and LUT transform in the main paper can be rewrit-
ten as

Y(r,x,y) = Φr
(x,y) +

K/3−1∑
k=0

Ψ3k
(x,y),

Y(g,x,y) = Φg
(x,y) +

K/3−1∑
k=0

Ψ1+3k
(x,y) ,

Y(b,x,y) = Φb
(x,y) +

K/3−1∑
k=0

Ψ2+3k
(x,y) .

(11)

4. Additional Quantitative and Qualitative
Comparisons

In this section, we provide additional quantitative com-
parisons on HDRTV1K dataset [2]. Additional qualitative
comparisons are conducted on FiveK [1], PPR10K [7], and
HDRTV1K [2].

4.1. Additional Dataset
The HDRTV1K is a dataset for the SDRTV-to-HDRTV
task, which converts SDR contents to their HDRTV ver-
sion. This dataset comprises captured images from 22
HDR10 videos and their corresponding SDR versions.
All HDR10 videos are encoded using PQ-OETF and the
rec.2020 gamut. The 1235 images from 18 videos are used
in the training stage, and 117 images from 4 videos are used
in the testing stage.

Table 6. Quantitative comparisons on HDRTV1K [2]. The best
and second-best results are in red and blue, respectively.

Method PSNR SSIM ∆EITP HDR-VPD3 Runtime(ms)
HDRNet [3] 35.73 0.9664 11.52 8.462 56.07
CSRNet [4] 35.04 0.9625 14.28 8.400 77.1
3DLUT [12] 36.06 0.9609 10.73 8.353 1.04
AdaInt [10] 36.22 0.9658 10.89 8.423 1.59

SABLUT [6] 36.41 0.9657 10.28 8.460 3.64
HDRTVNet [2] 36.88 0.9655 9.78 8.464 70.01

Ours 36.74 0.9663 9.99 8.500 1.38

4.2. Additional Quantitative Comparisons
We compare our method with other SOTA real-time meth-
ods [3, 4, 6, 10, 12] and HDRTVNet [2] on the HDRTV1K



[2]. HDRTVNet is a method for the SDRTV-to-HDRTV
task, which is introduced together with the HDRTV1K
dataset in their paper [2]. HDRTVNet is set to the fastest
configuration to compare the real-time performance, which
only uses the adaptive global color mapping.

We measure PSNR, SSIM, ∆EITP [5], and HDR-VPD3
[8]. The ∆EITP is the color difference on the ICtCp space
and is designed for HDRTV. HDR-VDP3 is an improved
version of HDR-VDP2 that supports the rec.2020 gamut.
We measure these metrics using codes in the official repos-
itory of HDRNet. As the HDRTV1K dataset was captured
from video sequences, this experiment can offer insights
into the performance on video.

As can be seen in Tab. 6, our method shows suitable per-
formance and inference time on real-time video process-
ing. Although HDRTVNet has the best score on PSNR
and ∆EITP , it fails to achieve real-time performance under
the fastest configuration. Our model delivers real-time pro-
cessing with a minor performance drop: 0.11 dB on PSNR,
0.0001 on SSIM, and 0.11 on ∆EITP .

4.3. Additional Qualitative Comparisons
We provide additional qualitative results in Fig. 3, Fig. 4
and Fig. 5.
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Figure 3. Qualitative comparisons for photo retouch task on the FiveK dataset [1]. The error maps at the bottom of each picture present
differences with ground truth. Each color on error map indicates the degree of error based on the corresponding color bars on the right.
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Figure 4. Qualitative comparisons for photo retouch task on the PPR10K dataset [7]. The error maps at the bottom of each picture present
differences with ground truth. Each color on error map indicates the degree of error based on the corresponding color bars on the right.
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Figure 5. Qualitative comparisons for SDRTV-to-HDRTV task on the HDRTV1K dataset [2]. The error maps at the bottom of each picture
present differences with ground truth. Each color on error map indicates the degree of error based on the corresponding color bars on the
right.
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