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Supplementary Material
A. Supplementary Section
In this supplementary document, we present the following:
• Theoretical background on Hopfield energy networks and sparse Hopfield energy networks, the proof of the noise robust-

ness in the intermediate cases, and the error bound of PLADIS in Section B.
• Detailed description of the evaluation metrics and implementation in Section C.
• Further detail and results of the user preference study in Section D.
• Results for other backbone models including Stable Diffusion 1.5 and SANA, and combination with FreeU in Section E.
• Results from one-step sampling with a guidance-distilled model in Section F.
• Additional ablation studies, including attention temperature, cross-attention maps, the effect of layer selection, extrapola-

tion strategy, and only sparse attention in Section G.
• Additional qualitative results, including interactions with existing guidance sampling approaches, the guidance-distilled

model, and further ablation studies in Section H.

B. Theoretical Background
Notations. For a ∈ R, a+ := max{0, a}. For z, z′ ∈ Rd, ⟨z, z′⟩ = z⊺z′ is the inner product of two vectors. For z =
(z1, . . . , zd) ∈ Rd, we denote the sorted coordinates of z as z(1) ≥ z(2) ≥ · · · ≥ z(d), that is, z(ν) is the ν’th largest element
among zi’s. ∆M := {p ∈ RM |pi ≥ 0,

∑
pi = 1}, (M − 1)-dimensional simplex.

In this section, we provide the concept of modern Hopfield network and its sparse extension in simple form, to make
readers fully understand the motivation and intuition of our method and encourage further research upon our works.

Initially, a Hopfiled model was introduced as an associative memory that can store binary patterns[23]. The model is
optimized to store patterns in the local minima of associated energy function. Then, given query input, the closest local
minimum point of the energy function is retrieved. There were many extensions of the classic model to improve stability and
capacity of the model, such as exponential energy functions or continuous state models[2, 9, 29].

Ramsauer et al. proposed modern Hopfield network that can be integrated into deep learning layers [43]. The network is
equipped with a new energy function E and retrieval dynamics T that are differentiable and retrieve patterns after one update:

EDense : Rd → R,x 7→ −lse(β,Ξ⊤x) +
1

2
⟨x,x⟩, (16)

TDense : Rd → Rd,x 7→ ΞSoftmax(βΞ⊤x) (17)

where x ∈ Rd represents a query input, Ξ = [ξ1 . . . ξM ] ∈ Rd×M , ξi ∈ Rd denotes a pattern stored,
lse(β, z) := log

(∑M
i=1 exp(βzi)

)
/β is log-sum-exponential function for β > 0 and Softmax(z) :=

1∑d
i=1 exp(zi)

(exp(z1), . . . , exp(zd)), for z ∈ RM . Theoretical results about the energy function and the retrieval dynam-
ics including convergence, properties of states were proposed [43].

Connection with attention of the Transformer Interesting connection between the update rule and self-attention mech-
anism used in transformer and BERT models was also proposed [43]. Specifically, we provide the detail derivation of this
connection by following [43]. Firstly, we extend TDense in Eq. 17 to multiple queries X := {xi}i∈[N ]. Given any raw query R

and memory matrix Y that are input into Hopfield model, we calculate X and Ξ as X⊤ = RWQ := Q,Ξ⊤ = YWK := K,
using weight matrices, WQ,WK . Therefore, we rewrite TDense as K⊤Softmax(βKQ⊤).

Then, by taking transpose and projecting K to V with WV , we have

TDense : X 7→ Softmax(βQK⊤)KWV = Softmax(βQK⊤)V, (18)

which is exactly transformer self-attention with β = 1/
√
d. In other words, we obtain by employing the notations in

the Eq. (12),

TDense : X 7→ Softmax(QK⊤/
√
d)V := At(Q,K,V) = At(WQX,WKX,WV X) (19)



However, we can extend the interpretation to a cross-attention mechanism:

TDense : (X,Y) 7→ Softmax
(
XWQW

⊤
KY⊤/

√
d
)
YWV = At(WQX,WKY,WV Y)

We find similarity in the above cross-attention formula with inputs X,Y and weight matrices WQ,WK ,WV . As dis-
cussed in lines of this paper, we focus on this extension into the cross-attention mechanism.

In terms of modern Hopefield network, the input query is processed with additional transformation WQ to increase
complexity of network and inner product are computed with stored (learned) WKY patterns (keys). Then, the retrieved
patterns (values) for next layers are computed. Different layers can have different patterns, so hierarchical patterns are stored
and retrieved in deep layers. Note that while Hopfield network outputs one pattern, the attention yields multiple patterns, so
attention corresponds to stack of outputs of Hopfield network. Hence, the attention is multi-level and multi-valued Hopfield
network.

Sparse Hopfield Network Later, sparse extensions of the modern Hopfield network are proposed [24, 60]. The energy
function was modified to make sparse the computation of retrieval dynamics:

Eα : Rd → R,x 7→ −Ψ⋆
α(β,Ξ

⊤x) +
1

2
⟨x,x⟩, (20)

Tα : Rd → Rd,x 7→ Ξα-Entmax(βΞ⊤x), (21)

and Ψ⋆
α is the convex conjugate of Tsallis entropy [56], Ψα, α-Entmax(z), represents the probability mapping:

Ψα(p) :=

{
1

α(α−1)

∑M
i=1(pi − pαi ), α ̸= 1,

−
∑M

i=1(pi − log pi), α = 1,
(22)

α-Entmax(z) := argmax
p∈∆M

[⟨p, z⟩ −Ψα(p)], (23)

where p ∈ RM . Here, α controls the sparsity. When α = 1, it is equivalent to a dense probability mapping, 1-Entmax =
Softmax, and as α increases towards 2, the outputs of α-Entmax become increasingly sparse, ultimately converging to
2-Entmax ≡ Sparsemax(z) := argmin

p∈∆M

∥p− z∥ [38]. Notably, when α = 1, Tα becomes equivalent to TDense ≡ T1 [58].

We have simple formula for α-Entmax[38]. There is a unique threshold function τ : RM → R that satisfies

α-Entmax(z) = [(α− 1)z− τ(z)1]
1/(α−1)
+ . (24)

From this formula, we know that the entries less than τ/(α − 1) map to zero, so sparsity is achieved. We will denote the
number of nonzero entries in α-Entmax as κ(z) for later use to derive theoretical results. For α = 2, the exact solution
can be efficiently computed using a sorting algorithm [15, 39]. For 1 < α < 2, inaccurate and slow iterative algorithm was
used for computing α-Entmax [36]. Interestingly, for 1.5-Entmax, an accurate and exact solution are derived in a simple
form [41].

Similar to TDense, Tα can be extended to attention mechanisms, establishing a strong connection with sparse attention. In
other words, by following the derivation as provided in Eq. (18), and Eq. (19), we can obtain

Tα : X 7→ α-Entmax(QK⊤/
√
d)V := Atα(Q,K,V) (25)

Furthermore, similar to the dense attention mechanism, we can also extend into a cross-attention mechanism with inputs X
and Y:

Tα : (X,Y) 7→ α-Entmax
(
XWQW

⊤
KY⊤/

√
d
)
YWV = Atα(WQX,WKY,WV Y)

Noise robustness of sparse Hopfield network In SHN, sparsity reduces retrieval errors and provide faster convergeness
compared to dense retrieval dynamics [24, 60]. While the sparse extension is an efficient counterpart of dense Hopfield
network, it has been discovered that there is more advantages to use sparse one besides efficiency [24, 60].



Definition 1 (Pattern Stored and Retrieved). Suppose every pattern ξµ is contained in a ball Bµ. We say that ξµ is stored if
there is a single fixed point x∗

i ∈ Bµ, to which all point x ∈ Bµ converge, and Bµ’s are disjoint. We say that ξµ is retrieved
for an error ϵ if ||T (x)− ξµ|| ≤ ϵ for all x ∈ Bµ

For following theorems, m := maxν ||ξν ||.

Theorem 3 (Retrieval Error). [24, 43, 60] Let Tα be the retrieval dynamics of Hopfield model with α-Entmax.

For α = 1, ||Tα(x)− ξµ|| ≤ 2m(M − 1) exp
{
−β

(
⟨ξµ,x⟩ −max

ν
⟨ξµ, ξν⟩

)}
. (26)

For α = 2, ||Tα(x)− ξµ|| ≤ m+mβ

[
κ
(
max

ν
⟨ξν ,x⟩ − [Ξ⊺x](κ)

)
+

1

β

]
. (27)

For α > α′, ||Tα(x)− ξµ|| ≤ ||Tα′ − ξ||. (28)

You can find the result Eq. (26) in [43], Eq. (27) in [24], and Eq. (28) in [24, 60].

Corollary 3.1. (Noise-Robustness) [24, 60]. In case of noisy patterns with noise η, i.e. x̃ = x + η (noise in query) or
ξ̃µ = ξµ + η (noise in memory), the impact of noise η on the sparse retrieval error ||T2(x)− ξµ| is linear, while its effect on
the dense retrieval error ||T1(x)− ξµ|| is exponential.

where ξµ is memory pattern and to be considered stored at a fixed point of T . This theorem suggests that under noisy
conditions, sparse attention mechanisms governed by Tα with α > 1 exhibit superior noise robustness compared to standard
dense attention. Critically, increasing sparsity (via higher α) further diminishes retrieval errors.

We propose a new theoretical result that completes above theorem by providing error estimation for all intermediate cases
that was not given.

Theorem 4 (Retrieval Error 2). Let Tα be the retrieval dynamics of Hopfield model with α-Entmax.

For 1 < α ≤ 2, ||Tα(x)− ξµ|| ≤ m+mκ
[
(α− 1)β

(
max

ν
⟨ξν ,x⟩ − [Ξ⊺x](κ+1)

)] 1
α−1

, (29)

Here, we abuse the notation [Ξ⊺x](M+1) := [Ξ⊺x](M) −M1−α/(α− 1).

Thanks to this new theorem, we can estimate the impact of noise on the sparse retrieval error for all 1 < α < 2.

Corollary 4.1. (Noise-Robustness) In case of noisy patterns with noise η, the impact of noise η on the retrieval error
||Tα(x)− ξµ|| is polynomial of order 1

α−1 for 1 < α ≤ 2.

Remark The proposed theorem includes the case α = 2. In that case, the right hand side becomes

mβ
[
κ
(
max

ν
⟨ξν ,x⟩ − [Ξ⊺x](κ+1)

)]
.

Therefore, by combining with previous result, we obtain tighter bound:

||T2(x)− ξν || ≤ mβ

[
κmax

ν
⟨ξν ,x⟩+min

{
−κ[Ξ⊺x](κ+1),−κ[Ξ⊺x](κ) +

1

β

}]
proof of Thm. 4.

||Tα(x)− ξµ|| =
∥∥Ξα-Entmax (βΞ⊺x)− ξµ

∥∥ =

∥∥∥∥∥
κ∑

ν=1

ξ(ν) [α-Entmax (βΞ
⊺x)](ν) − ξµ

∥∥∥∥∥ (30)

≤ ||ξµ||+
κ∑

ν=1

∥∥∥ξ(ν)∥∥∥ [α-Entmax (βΞ⊺x)](ν) (31)

≤ m+m

κ∑
ν=1

[
(α− 1)

(
[βΞ⊺x](ν) − [βΞ⊺x](κ+1)

)] 1
α−1

(32)

≤ m+mκmax
ν

[
(α− 1)β

(
⟨ξν ,x⟩ − [Ξ⊺x](κ+1)

)] 1
α−1

. (33)

For Eq. (32), we use the following lemma.



Lemma 1. For z ∈ RM and ν ≤ κ(z), [α-Entmax(z)](ν) ≤ [(α− 1)(z(ν) − z(κ+1))]
1/(α−1).

Proof.

(i) κ < M
From the definition of κ, we have following properties.

α-Entmax(z)(κ+1) = 0.

z(κ+1) ≤ τ(z)/(α− 1).

Keep the last inequality, and now consider the ν’th largest coordinate of Eq. (24), but we can omit + since it is strictly
positive.

α-Entmax(z)(ν) = [(α− 1)z(ν) − τ(z)]
1/(α−1)
+

= [(α− 1)z(ν) − τ(z)]1/(α−1)

≤ [(α− 1)z(ν) − (α− 1)z(κ+1)]
1/(α−1)

(ii) κ = M
We use Hölder inequality(∑

|ai|p
)1/p (∑

|bi|q
)1/q

≥
∑

|aibi| for p, q ∈ (1,∞), 1/p+ 1/q = 1

to estimate a lower bound of τ for α ̸= 2. By substituting ai = (α− 1)zi − τ, bi = 1, p = 1/(α− 1), q = 1/(2− α),(∑
|(α− 1)zi − τ |1/(α−1)

)α−1 (∑
1
)2−α

≥
∑

|(α− 1)zi − τ |.

We know that all entries are positive (α− 1)zi − τ > 0 since κ = M . Moreover,∑
[(α− 1)zi − τ ]1/(α−1) = 1

since the left hand side is the sum of the coordinates of α-Entmax output. Therefore,

M2−α ≥ (α− 1)
∑

zi −Mτ

τ

α− 1
≥ 1

M

∑
zi −

M1−α

α− 1

≥ min zi −
M1−α

α− 1
= z(M) −

M1−α

α− 1

We remain the case α = 2. We directly sum up the entries of 2-Entmax:

1 =
∑

|zi − τ | =
∑

zi −Mτ

≥ M min zi −Mτ

∴ τ ≥ z(M) −
1

M
= z(M) −

M1−α

α− 1

We further estimate the retrieval error of retrieval dynamics defined in PLADIS. We use the notation:

T λ
α (x) := λTα(x) + (1− λ)T1(x).

Then, we have following result for the retrieval error of T λ
α .



Theorem 5 (Retrieval Error 3). Consider the retrieval dynamics T λ
α

||T λ
α (x)− ξµ|| ≤ |λ|m+ |λ|mκ

[
(α− 1)β

(
max

ν
⟨ξν ,x⟩ − [Ξ⊺x](κ+1)

)] 1
α−1

(34)

+ |1− λ|2m(M − 1) exp
{
−β

(
⟨ξµ,x−max

ν
⟨ξµ, ξν⟩

)}
. (35)

Proof.

||T λ
α (x)− ξν || = ||λTα(x) + (1− λ)T1(x)− ξν ||

≤ |λ|||Tα(x) + ξν ||+ |1− λ|||T1(x)− ξν ||

and apply Eq. (26) and Eq. (29).

This theorem suggests that the retrieval dynamics given in PLADIS have the error bound of mixture of polynomial and
exponential terms.

C. Metrics and Implementation Detail
For image sampling in Table 2, sampling without CFG guidance is conducted using 30,000 randomly selected text prompts
from the MSCOCO validation dataset. Conversely, sampling with CFG is performed with uniformly selected values of w
in the range (3,5). In both cases, the PAG and SEG scales are fixed at 3.0, following the recommended settings from the
corresponding paper.

For Tables 3 and 4, we use 200 prompts from Drawbench [49], 400 prompts from HPD [61], and 500 prompts from the
test set of Pick-a-pic [28], generating 5 images per prompt. Additionally, for the ablation study in Table 5, we generate 5,000
images from the MSCOCO validation set with CFG and PAG guidance. As with Table 2, the CFG scale is uniformly selected
within the range of (3,5), while the PAG scale remains set at 3.0.

D. User Preference Study
As presented in Fig. 7, we employ human evaluation and do not rely solely on automated evaluation metrics such as
FID, CLIPScore, ImageReward, etc. Our aim is to assess whether PLADIS truly improves image quality and prompt co-
herence. To rigorously evaluate these aspects, we categorized caess into two groups: interaction with guidance sampling
including CFG [19], PAG [1], SEG [21], and interaction with guidance-distilled models such as SDXL-Turbo [50], SDXL-
Lightening [33], DMD2 [64], and Hyper-SDXL [44]. We evaluate all models based on 20 selected prompts from the randomly
selected Drawbench [49], HPD [61], and Pick-a-pic [28]. For the guidance-distilled model, we select half from one-step sam-
pling results and the other half from four-step sampling results. Human evaluators, who are definitely blind and anonymous,
are restricted to participating only once. Evaluators are shown two images from model outputs with and without PLADIS
based on the same text prompt and measure images with two questions: for image quality, ”Which image is of higher qual-
ity and visually more pleasing?” and for prompt alignment, ”Which image looks more representative of the given prompt.”
The order of prompts and the order between models are truly randomized. In Fig. 7, we averaged all of the results related
to the guidance-distilled model due to limited space. Further presenting in detail, we present a user preference study for
each guidance-distilled model as shown in Fig. 9. As similar to guidance sampling, guidance-distilled models with PLADIS
outperform both image quality and prompt alignment, validating the practical effectiveness of PLADIS.

E. Application on Other Backbone
To demonstrate the robustness of our proposed method, we perform experiments using additional backbones, including Stable
Diffusion v1.5 (SD1.5) and SANA [62]. SANA is a recently introduced text-to-image diffusion model that uses linear atten-
tion, enabling faster image generation. It is based on the Diffusion Transformer (DiT) architecture. We generate 30K samples
from randomly selected MS COCO validation set images and evaluate them using FID, CLIPScore, and ImageReward, as
shown in Table 8. For SD1.5, we use CFG, while SANA is tested with its default configuration without modifications.

Interestingly, we observe that both SD1.5 and SANA, when integrated with our PLADIS method, consistently improve
performance across all metrics. A visual comparison is provided in Fig. 13 and Fig. 14. As shown in the figures, the generation
with our PLADIS provides more natural and pleasing images and precise matching between images and text prompts on both
backbones. As seen in other experiments, our PLADIS enhances both generation quality and text alignment with the given
prompts. By confirming these improvements with SD1.5 and SANA, we demonstrate that PLADIS is robust across different
backbones, particularly transformer-based architectures.



Figure 9. User preference study for PLADIS in the context of guidance-distilled models. We evaluate the two aspects of model output with
and without PLADIS such as image quality and prompt alignment.

Table 7. Quantitative comparison across various datasets using 1-steps sampling with the guidance-distilled model.

Drawbench [49] HPD [61] Pick-a-pic [28]

Method CLIPScore ↑ PickScore ↑ ImageReward ↑ CLIPScore ↑ PickScore ↑ ImageReward ↑ CLIPScore ↑ PickScore ↑ ImageReward ↑

Turbo [50] 27.19 21.67 0.305 28.45 21.85 0.479 26.89 21.16 0.346

+ Ours 27.56 (+0.37) 21.68 (+0.01) 0.390 (+0.08) 28.78 (+0.33) 21.86 (+0.01) 0.517 (+0.04) 27.10 (+0.21) 21.17 (+0.01) 0.378 (+0.04)

Light [33] 26.08 21.86 0.428 27.37 22.05 0.730 25.73 21.34 0.585

+ Ours 26.66 (+0.58) 21.94 (+0.08) 0.558 (+0.13) 28.42 (+1.05) 22.24 (+0.19) 0.830 (+0.10) 26.63 (+0.90) 21.46 (+0.12) 0.680 (+0.10)

DMD2 [64] 27.91 22.04 0.651 29.95 22.18 0.888 28.14 21.57 0.770

+ Ours 28.09 (+0.19) 22.05 (+0.01) 0.662 (+0.01) 30.21 (+0.26) 22.20 (+0.02) 0.902 (+0.01) 28.38 (+0.43) 21.58 (+0.01) 0.794 (+0.02)

Hyper [44] 27.41 22.27 0.662 29.09 22.61 0.912 27.29 21.91 0.812

+ Ours 27.80 (+0.39) 22.30 (+0.03) 0.674 (+0.01) 29.42 (+0.33) 22.65 (+0.04) 0.932 (+0.02) 27.85 (+0.56) 21.92 (+0.01) 0.832 (+0.02)

Table 8. Application on other BackBone Model on MS COCO val-
idation set and Comparison results for another extrapolation strat-
egy and combination with FreeU [51]. SD1.5 and SANA indicate
that Stable Diffusion version 1.5 and SANA 1.6 B model, respec-
tively.

Resolution BackBone FID ↓ CLIPScore ↑ ImageReward ↑

512 × 512
SD1.5 23.88 24.11 -0.368

+ PLADIS (Ours) 22.41(-1.48) 25.09 (+0.98) -0.08 (+0.360)

1024 × 1024
SANA [62] 28.01 26.61 0.867

+ PLADIS (Ours) 27.53(-0.48) 26.83 (+0.21) 0.883(+0.016)

Resolution Method FID ↓ CLIPScore ↑ ImageReward ↑

1024 × 1024
SDXL (CFG) 32.68 25.90 0.425

+ Ours (Prediction) 29.48 26.60 0.619
+ Ours (In-model) 28.50 26.61 0.626

1024 × 1024
SDXL + FreeU 35.66 25.96 0.425

+ PLADIS (Ours) 28.79 26.93 0.626

Table 9. Ablation study on layer group which is replaced with
PLADIS on MS COCO validation dataset.

Layer FID ↓ CLIPScore ↑ ImageReward ↑

Baseline 33.76 25.41 0.478

Up 29.78(-3.98) 25.78 (+0.37) 0.624(+0.15)

Mid 31.76(-2.00) 25.46 (+0.05) 0.496(+0.02)

Down 31.46(-2.30) 25.43 (+0.02) 0.501(+0.02)

Up, Mid 30.76(-3.00) 25.46 (+0.05) 0.548(+0.07)

Up, Down 28.46(-5.30) 26.12 (+0.71) 0.658(+0.18)

Mid, Down 31.36(-2.40) 25.52 (+0.11) 0.498(+0.02)

All (Ours) 27.87(-5.89) 26.41 (+1.00) 0.726(+0.25)

F. Comparison Results on One-Step Sampling

As discussed in Section 5, we found that our proposed method, PLADIS, is also effective for one-step sampling with a
guidance-distilled model. Following the experimental settings in Table 4, we generate images from text prompts in human
preference datasets such as Drawbench [49], HPD [61], and Pick-a-pick [28]. The generated images are evaluated using
CLIPScore, ImageReward, and PickScore, as presented in Table 7. Our method consistently yields performance improve-
ments, particularly in text alignment and human preference, across all baselines. This demonstrates the robustness of our
approach for denoising steps and highlights its potential as a generalizable boosting solution.



Figure 10. Comparison results for various temperatures, with and without PLADIS, are presented, including the baseline (Softmax) and
1.5−Entmax. While lower temperatures with the baseline offer benefits in both cases, our proposed method (α = 1.5), with and without
PLADIS, outperforms across all temperature settings.

G. Additional Ablation Study
G.1. Comparison with Attention Temperature
In the field of NLP, to improve existing attention mechanisms, temperature scaling [32], also known as inverse temperature,
has been extensively studied to adjust the sharpness of attention. It is defined as follows:

At(Q,K,V) = Softmax(
QK⊤
√
d ∗ τ

) (36)

where τ denotes the temperature, which controls the softness of the attention. A lower temperature results in sharper activa-
tions, creating a more distinct separation between values. Importantly, it is closely related to the β in α-Entmax. In common
attention mechanisms, β is typically set to the square root of the dimension,

√
d, which corresponds to τ = 1.0. In modern

sparse Hopfield energy functions, β serves as a scaling factor for the energy function, influencing the sharpness of the energy
landscape and thereby controlling the dynamics [24]. Hu et al. argue that high β values, corresponding to low temperatures
(τ < 1), help maintain distinct basins of attraction for individual memory patterns, facilitating easier retrieval.

As discussed in the main paper, we provide an ablation study on the hyperparameter τ (which is equivalent to β) by varying
τ from 0.9 to 0.1 for Softmax, alongside our default configuration (1.5−Entmax). Similar to the previous ablation study,
we generate 5K images from randomly selected samples in the MS-COCO validation set under CFG and PAG guidance with
our PLADIS, as shown in Fig. 10.

We observed that lowering the temperature (increasing β) consistently improved generation performance in both transfor-
mations, such as Softmax and 1.5−Entmax. In the case without PLADIS, Softmax with a lower temperature improved
all metrics, but its performance still remained inferior to sparse attention (α = 1.5). When using PLADIS, the trend was
similar: Softmax with a lower temperature benefited from PLADIS, but it still did not outperform the 1.5−Entmax con-
figuration with PLADIS.

Furthermore, 1.5−Entmaxwith a lowered temperature consistently improves generation quality in terms of visual quality
and text alignment, ultimately converging to similar performance. Notably, very low temperatures with Softmax result in
nearly identical sparse transformations, but with larger-than-zero intensities. This suggests that lowering the temperature ben-
efits all transformations in α-Entmax for 1 ≤ α ≤ 2. However, dense alignment with a lowered temperature is insufficient,
and sparse attention remains necessary in both cases, with and without PLADIS. Additionally, adjusting other hyperparame-
ters is time-consuming, but our PLADIS with 1.5−Entmax does not require finding the optimal hyperparameter τ , thanks
to the convergence of performance across various τ values. Therefore, these results demonstrate that the noise robustness of
sparse cross-attention in diffusion models (DMs) is crucial for generation performance.

G.2. Analysis on Cross-Attention Map
To analyze the effect of our proposed method in the cross-attention module, we directly visualize the cross-attention maps, as
shown in Fig. 11. Each word in the prompt corresponds to an attention map linked to the image, showing that the information



Figure 11. Qualitative comparison of cross-attention average maps across all time steps. Top: Baseline. Middle: PLADIS (with λ = 1)
represent only use α-Entmax transformation. Bottom: PLADIS (with λ = 2.0). Our PLADIS with λ = 2.0 provides a more sparse and
sharp correlation with each text prompt, especially ”rabbit” and ”dog.” Furthermore, other approaches yield incorrect attention maps that
highlight the space between the dog prompt and rabbit space. However, our method provides an exact attention map.

related to the word appears in specific areas of the image. We observe that the baseline (dense alignment with softmax)
produces blurrier attention maps for the related words. Moreover, the generated image does not accurately reflect the text
prompt of a ”small dog,” instead generating a ”small rabbit.” The cross-attention map highlights the small rabbit and a large
rabbit nearby, associated with the dog prompt, resulting in poor text alignment.

When replacing the cross-attention with a sparse version, the maps become more sparse but still generate a ”small rabbit”
and incorrect attention maps. In contrast, our PLADIS produces both sparse and sharp attention maps compared to the
baseline, and correctly aligns the attention maps with the given text prompts. As a result, PLADIS consistently improves text
alignment and enhances the quality of generated samples across various interaction guidance sampling techniques and other
distilled models.

G.3. The Effect of Layer Group Selection
To apply PLADIS in the cross-attention module, we incorporate it into all layers, including the down, mid, and up groups in
the UNet. In SDXL, each group contains multiple layers; for example, the mid group has 24 layers, while the up group has
36 layers. To examine the effect of layer group selection, we focus on groups like the mid and up, instead of studying each
layer ex. the first layer in the up group. We conduct experiments by varying the groups for the application of PLADIS in the
cross-attention module, as shown in Tab 9.

Similar to previous ablation studies, we generate 5K samples from randomly selected data in the MS COCO validation
set under CFG and PAG guidance. We observe that when applied to a single group, the up group has the most significant
impact compared to others. However, in all cases, the use of PLADIS improves both generation quality and text alignment,
as measured by FID and CLIPScore. Finally, combining all groups yields the best performance, confirming that no heuristic
search for the target layer is necessary and validating our default configuration choice.

G.4. Two Extrapolation Strategies
To validate our design choice, we investigate two types of extrapolation strategies using different attention mechanisms: in-
model extrapolation and output-based extrapolation. For in-model extrapolation, we test perturbations using sparse attention,
the identity matrix (PAG), and blurred attention maps (SEG). We observe that only sparse attention consistently improves
performance under extrapolation, while other variants yield semantically meaningless outputs even under minor extrapolation
(Fig. 12). This suggests that sparse attention operates as a valid energy landscape under Modern Hopfield dynamics, whereas
identity or blurred attention matrices may affect diffusion outputs but fail to define coherent attention dynamics, ultimately
leading to degraded generation quality.



Figure 12. In-model extrapolation results. Other perturbation approaches result in semantically degraded outputs even under minor extrap-
olation, whereas our method consistently improves generation quality.

Table 10. Quantitative comparison on Geneval. Rows denote different methods, and columns denote guidance/backbone combinations.

Method SDXL (CFG) SDXL (CFG + PAG) SDXL (CFG + SEG) FLUX (schnell) FLUX (dev)

Baseline 0.547 0.553 0.551 0.671 0.666
Only Sparse 0.581 0.571 0.582 0.694 0.676
Ours (Extrapolation) 0.594 0.598 0.601 0.713 0.691

We also explore output-based extrapolation using both sparse and dense attention variants. Although the output-based ver-
sion of our method yields better performance than the baseline, it still underperforms compared to our in-model extrapolation
while incurring higher inference costs (Tab. 8). These findings further support the efficiency and efficacy of our in-model
extrapolation approach.

Our design is grounded in a principled integration of Hopfield retrieval dynamics and diffusion guidance. Specifically,
we reinterpret extrapolation as a guidance process between a strong and a weak attention module inside the model. While
diffusion-level extrapolation using blurred or identity attention may produce plausible outputs, such attention forms cannot
act as valid components of attention dynamics. In contrast, sparse attention preserves the energy-based retrieval structure
required for stable and interpretable in-model extrapolation.

G.5. Comparison with Sparse Attention Only

To isolate the benefit of our extrapolation design beyond simply applying sparse attention, we conduct experiments on the
Geneval benchmark, a reliable dataset for evaluating both text-image coherence and visual quality. As shown in Table 10,
across various guidance settings and even with a more challenging backbone (MMDiT), our method—extrapolation between
sparse and dense attention—consistently outperforms both the baseline and the version using only sparse attention. These
results further validate the effectiveness of our design choice.

H. Additional Qualitative Results

In this section, we present additional qualitative results to highlight the effectiveness and versatility of our proposed method,
PLADIS, across various generation tasks and in combination with other approaches.



Comparison of Guidance Sampling with Our Method Fig. 15, 16, and 17 provide qualitative results demonstrating
interactions with existing guidance methods such as CFG, PAG, and SEG, respectively. By combining PLADIS with these
guidance approaches, we observe a significant enhancement in image plausibility, particularly in text alignment and coherence
with the given prompts, including improvements in visual effects and object counting. Through various examples of this joint
usage, we demonstrate that PLADIS improves generation quality without requiring additional inference steps.

Comparison of Guidance-Distilled Models with Ours Fig. 18 and 19 present qualitative results from applying our
method, PLADIS, to guidance-distilled models such as SDXL-Turbo [50], SDXL-Lightening [33], DMD2 [64], and Hyper-
SDXL [44], for both 1-step and 4-step cases. Notably, PLADIS significantly enhances generation quality, removes unnatural
artifacts, and improves coherence with the given text prompts, all while being nearly cost-free in terms of additional compu-
tational overhead.

Ablation Study on Scale λ Fig. 20 shows a visual example of conditional generation with controlled scale λ. We generate
samples using a combination of CFG and PAG, or CFG and SEG. For the ablation study, all other guidance scales are fixed,
and only our scale λ is adjusted. Consistent with the results shown in Sec 6, a scale λ of 2.0 produces the best results in terms
of visual quality and text alignment, which leads to our default configuration.

Ablation Study on α in α-Entmax As discussed in Sec. 6, PLADIS offers two options for choosing α: 1.5 or 2. Fig. 21
provides a qualitative comparison between the baseline, α = 1.5, and α = 2. Empirically, we adopt α = 1.5 as our default
configuration. While PLADIS with α = 2 improves generation quality and text alignment compared to the baseline (dense
cross-attention), PLADIS with α = 1.5 offers a more stable and natural enhancement in sample quality.



Figure 13. Qualitative evaluation of Stable Diffusion 1.5 using our PLADIS method: PLADIS significantly boosts generation quality,
strengthens alignment with the given text prompt, and generates visually compelling images.



Figure 14. Qualitative assessment of SANA [62] with and without our PLADIS method: PLADIS notably improves generation quality,
strengthens alignment with the provided text prompt, and produces visually striking images.



Figure 15. Qualitative evaluation of the joint usage CFG [19] with our method: CFG with PLADIS generates more plausible images with
significantly improved text alignment based on the text prompt, without requiring additional inference.



Figure 16. Qualitative evaluation of the joint usage PAG [1] with our method: Integrating PAG with PLADIS produces highly credible
images with markedly enhanced correspondence to the text prompt, all achieved without any further inference steps.



Figure 17. Qualitative evaluation of the joint usage SEG [21] with our method: The combination of SEG and PLADIS yields highly
convincing image generations with substantially improved alignment to the given text prompt, accomplished without the need for additional
inference.



Figure 18. Qualitative comparison of the guidance-distilled model with our PLADIS method for one-step sampling: Even with one-step
sampling, our PLADIS enhances generation quality, improves coherence with the given text prompt, and produces visually plausible
images.



Figure 19. Qualitative comparison of the guidance-distilled model using our PLADIS method for four-step sampling: In the case of the
four-step sampling approach, PLADIS substantially improves generation quality, enhances alignment with the provided text prompt, and
produces visually convincing images.



Figure 20. Qualitative comparison by varying the scale λ: As λ increases, the images display greater plausibility and improved text
alignment. However, excessively high values lead to smoother textures and potential artifacts, similar to those found in CFG. The first two
rows of images are generated using CFG and PAG, while the remaining rows are produced with CFG and SEG. When λ is greater than 1,
our PLADIS method is applied. In our configuration, λ is set to 2.0.



Figure 21. Qualitative comparison by α in PLADIS: Although PLADIS with α = 2 also sifgnificantly improves generation quality and text
alignment compared to the baseline (dense cross-attention), PLADIS with α = 1.5 offers a more robust and coherence given text prompts,
leads to our base configuration as α = 1.5.


