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A. Additional Results
A.1. Personalized Multi-Human Scene Generation
Additional Qualitative Comparison. As shown in Fig. S1
and S2, our proposed method demonstrates significant ad-
vantages over existing approaches. Notably, methods like
InstantID+OMG [S28, S14] and IPAdapter+OMG [S33,
S14], which rely on 2D skeleton-based pose conditioning,
exhibit severe anatomical inaccuracies in challenging sce-
narios (highlighted by yellow arrows). These issues stem
from the inherent limitations of 2D pose representations,
which struggle to handle overlapping body parts and intri-
cate interactions effectively. Blue arrows highlight cases
where body shape preservation fails, where our approach
maintains accurate body structure and pose fidelity while
delivering superior performance in both face identity preser-
vation and body shape consistency.

DreamBooth [S25], on the other hand, suffers even
more pronounced issues due to its lack of pose guidance.
This leads to severe anatomical distortions and, in some
cases, the complete omission of individuals in multi-person
scenes. Additionally, DreamBooth struggles with clothing-
body shape displacement, where clothing styles are directly
transferred without adapting to the individual’s body shape.

These findings further underscore the robustness and ver-
satility of PersonaCraft, making it a state-of-the-art solution
for personalized image generation in complex, real-world
scenarios.
Comparison with Additional Baselines. We compared
PersonaCraft against other baselines, including UniPor-
trait [S12], MS-Diffusion [S29], and FastComposer [S31].
While these methods share similar capabilities, they are not
fully suited for our benchmark, making direct comparisons
challenging. As shown in (Fig. S3), yellow arrows highlight
anatomical inconsistencies in complex poses and occluded
scenarios due to reliance on 2D pose representations or the
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absence of pose control. PersonaCraft, in contrast, gener-
ates anatomically accurate and natural images under these
conditions.

Additionally, MS-Diffusion copies clothing directly
from full-body references without proper displacement.
PersonaCraft integrates personalized body shapes and
clothing displacement, maintaining consistency and real-
ism.

These results highlight PersonaCraft’s superiority in
generating accurate, identity-consistent images and han-
dling occlusions and diverse poses with exceptional natu-
ralness and customization.

A.2. Pose-Controlled Multi-Human Scene Genera-
tion

We assess pose-controlled multi-human scene generation
by comparing PersonaCraft with existing methods in both
single-human and multi-human contexts. As shown in
Fig. S4, S5, and S6, our proposed method demonstrates
significant advantages over existing approaches. No-
tably, methods that rely on 2D pose conditioning (e.g.,
T2IAdapter-SDXL[S18], ControlNet-SDXL [S34, S23])
struggle with occlusion handling, resulting in misaligned
poses and distorted structures. ControlNet-Flux [S16, S34]
shows instability: at a lower conditioning scale (0.8), it fails
to preserve anatomical coherence, while at a higher scale
(1.0), pose accuracy improves but image fidelity decreases.
In contrast, PersonaCraft successfully balances pose accu-
racy, body realism, and image fidelity, highlighting the ef-
fectiveness of our 3D-aware pose conditioning.

A.3. PersonaCraft with Stylization
The proposed method is a plug-and-play approach, mak-
ing it compatible with various style-specific LoRAs. To
evaluate its effectiveness, we conducted experiments com-
bining PersonaCraft with diverse style LoRAs, includ-
ing Crayon [S21], Pastel [S5], 3D Render [S11], Pixel
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Art [S19], Illustration [S4], Frosting Lane [S2], Pokémon
Trainer [S27], JoJo [S20], Graphic Novel [S9], and Car-
toon [S3]. The results, shown in Fig. S7, highlight the
method’s ability to adapt to different styles effectively. No-
tably, styles such as Pastel, Illustration, JoJo, and Pokémon
Trainer introduce changes in facial and body characteristics,
occasionally altering perceived identity, due to their bias.
Nevertheless, the outcomes remain visually compelling and
demonstrate the versatility of our approach.

A.4. Versatility of SCNet
To demonstrate the versatility of SCNet, we present results
combining SCNet with various face identity personalization
models, including InstantID [S28], PhotoMaker V2 [S17],
and IPAdapter-Face [S33]. As shown in Fig. S8, SCNet en-
ables robust body shape personalization and pose control
when paired with these face models, achieving comprehen-
sive full-body personalization and user-defined body shape
adjustments. Notably, face personalization varies slightly
depending on the chosen face module.

A.5. Effectiveness of Dual-Pathway Body Shape
Personalization

Our dual-pathway design combining SMPLx and text im-
proves body shape consistency in challenging cases, as
shown in Fig. S9. A user study with 600 responses from
60 users confirmed its effectiveness: 76.17% preferred our
method over SMPLx only (17%) and text-only (6.83%).

A.6. Robustness to 3D Conditioning Errors
Trained on SMPLx poses from MultiHMR [S8], our model
preserves fidelity under pose perturbations (Fig. S10 left),
supported by the robustness of the diffusion prior. More-
over, it reliably infers plausible occlusion boundaries even
with misaligned or noisy depth inputs (Fig. S10 right).
Shape inaccuracies are further alleviated by our dual-
pathway body shape representation.

A.7. SMPLx vs. SMPL Comparison
SMPLx offers better representation of hand and face poses,
as shown in the Fig. S11, providing better pose consistency
and controllablity compared to SMPL.

A.8. Ablation Study on Conditioning Scale
We analyze the effect of the conditioning scales of Identi-
tyNet and SCNet on identity preservation when provided
with face references and reference body shapes (SMPLx
depth). As shown in Fig. S12, when the conditioning scale
is set to 0 for both modules, the generated face and body
shapes differ significantly from the reference. This indi-
cates insufficient guidance from the reference inputs.

As the conditioning scales for IdentityNet and SCNet
increase, the generated images progressively resemble the

reference face and body shape. This improvement demon-
strates the critical role of conditioning strength in aligning
the generated outputs with the given references. Optimal
conditioning scales enable PersonaCraft to faithfully pre-
serve both facial and body shape identities, ensuring high-
quality personalization and consistency.

A.9. Ablation Study on Body Shape Parameters
For full-body personalized image generation, we extract the
body shape parameters of the character to be personalized
and use them for SMPLx rendering, which serves as the
conditions for SCNet. In Tab. S1, we analyze the impact
of incorporating the body shape parameters in this process.
Using body shape parameters enhances body shape preser-
vation during personalization. This indicates that leverag-
ing the body shape parameters enables the generation of
personalized images that more accurately reflect the char-
acter’s true physique.

Table S1. Evaluation of body shape preservation with and without
the use of the body shape parameter.

Single Multi Total

w/o body shape 0.615 0.520 0.539
w/ body shape 0.630 0.548 0.615

A.10. Ablation Study on Occlusion-aware 3D Pose
& Shape Conditioning

Comparison of 3D Pose Representations for SCNet. In
Fig. S13, we compare different combinations of SMPLx
rendering-depth, normal, and RGB rendering-as condition-
ing inputs for SCNet. Using both depth and normal enables
the model to leverage occlusion cues from depth and sur-
face orientation information from normal. This leads to
improved generation performance in occluded or complex
body regions compared to using depth alone. However, in-
corporating RGB rendering in addition to depth and normal
degrades image quality due to the use of multiple Control-
Nets for the same region. Therefore, we adopt the combi-
nation of depth and normal as base conditioning for SCNet.
Effectiveness of OccNet and OccCFG. Also, the effect of
our occlusion-aware 3D pose & shape conditioning compo-
nents is analyzed in Fig. S13. Using only 2D pose leads to
structural inconsistencies, while relying solely on 3D pose
(SCNet) struggles with fine-grained occluded regions. Our
full model (SCNet + OccNet + OccCFG) effectively pre-
serves pose structure while handling occlusions.

In Fig. S14, we present a detailed analysis of OccCFG.
We observe that increasing classifier-free guidance (CFG)
in occluded regions improves anatomical consistency by
leveraging stronger 3D pose information, effectively re-
solving local ambiguities. However, uniformly high CFG
strength leads to over-saturation in non-occluded areas. We
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Table S2. Additional comparison of baseline models fine-tuned on our training dataset (MPII). Quantitative evaluation of multi-human
personalization across face identity, body shape preservation, pose accuracy, text alignment, and image quality. ‘Single’ denotes person-
alization for a single individual, while ‘Multi’ refers to cases with multiple identities (2–5), with ‘Total’ representing the averaged results.
(*: fine-tuned on our training dataset.)

Multi-Human
Personalization

Face ID preservation↑ Body shape preservation↑ Pose Text Image quality

Single Multi Total Single Multi Total MPJPE (3D)↓ AP-0.5 (2D)↑ CLIP sim ↑ IS ↑ KID ↓

InstantID + OMG˚ 0.418 0.220 0.252 0.563 0.427 0.448 85.624 0.333 0.264 3.809 0.0996
IPAdapter+ OMG˚ 0.204 0.155 0.162 0.606 0.45 0.472 84.893 0.362 0.267 3.736 0.0984
IPA-Face + OMG˚ 0.350 0.181 0.207 0.568 0.429 0.451 86.373 0.355 0.265 3.930 0.0974

Ours 0.421 0.298 0.317 0.630 0.548 0.560 60.654 0.506 0.273 4.238 0.0931

found that applying CFG only in the human segmenta-
tion region also results in high CFG, whereas our OccCFG
avoids issues in unoccluded regions while maintaining ef-
fective guidance in occluded areas.

A.11. Efficiency Analysis
As detailed in Table S3, we compared the inference times
for multi-identity personalized image synthesis across var-
ious methods, specifically when generating images with
three distinct identities. Optimization-based personaliza-
tion methods like Textual Inversion [S10] and Dream-
Booth [S25] require a batch size of 4 and 500 optimization
steps per identity. This lengthy process results in signifi-
cantly extended inference times, rendering these approaches
highly inefficient for real-time applications.

In contrast, PersonaCraft offers superior efficiency.
While methods based on OMG [S14] involve a two-stage
generation process, PersonaCraft completes inference in
less than half the time (17.25s vs. 46.94s for OMG), despite
comparable VRAM usage (22.51GB for Ours vs. 20.85GB
for OMG). PersonaCraft’s modular design provides a sig-
nificant advantage by eliminating the need to retrain priors
or LoRAs, a requirement for methods like Textual Inversion
(which takes 1636.15s and uses 11.00GB). This efficiency,
coupled with its ability to generate high-quality personal-
ized images, is particularly beneficial when synthesizing
multiple identities in a single pass.

Table S3. Inference times for multi-identity personalized synthe-
sis.

Method Total Time (secs)

Text Inversion 1636.15
DreamBooth 770.713

InstantID + OMG 46.94
IPAdapter + OMG 44.62
IPA-Face + OMG 35.46

PersonaCraft (ours) 17.25

A.12. Additional Results with Baselines Fine-tuned
on Our Training Dataset

We further compare PersonaCraft with key baselines fine-
tuned on our training dataset: InstantID + OMG, IPAdapter
+ OMG, and IPA-Face + OMG for personalized multi-
human scene generation, and ControlNet-SDXL for pose-
controlled multi-human scene generation.

Personalized Multi-Human Scene Generation. Although
the baselines are fine-tuned on our training dataset, Tab. S2
shows that our method consistently outperforms baselines
in identity and body shape preservation. It achieves the
lowest MPJPE (3D) and highest AP (2D), indicating supe-
rior alignment with input poses. Additionally, PersonaCraft
surpasses baselines in IS and KID, demonstrating enhanced
perceptual quality and text-image coherence.
Pose-Controlled Multi-Human Scene Generation. Al-
though the baselines are fine-tuned on our training dataset,
Tab. S4 shows that PersonaCraft achieves the lowest MPJPE
(3D) and highest AP-0.5 (2D), demonstrating superior pose
alignment and keypoint localization.

Table S4. Additional comparison of the baseline fine-tuned on our
training dataset (MPII). Quantitative evaluation of pose-controlled
human generation in terms of pose accuracy, text alignment, and
image quality. (*: fine-tuned on our training dataset.)

Pose-Controlled
Human Generation

Pose Text Image quality

MPJPE (3D) ↓ AP-0.5 (2D) ↑ CLIP sim ↑ IS ↑ KID ↓

ControlNet-SDXL˚ 100.817 0.313 0.281 3.407 0.122
Ours 62.647 0.495 0.274 4.114 0.091

A.13. Failure Cases
While our method is versatile and can be applied to other
ControlNet models, the performance of our face person-
alization depends significantly on the underlying face net-
work. Additionally, the accuracy of 3D human model fit-
ting is dependent on the performance of the fitting algorithm
used. Variations in the quality of the fitting process may im-
pact the final output, especially in cases where the reference
data is incomplete or inaccurate as presented in Fig. S15.
(Additional Experimental details are continued in Sec. B)
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Figure S1. Additional comparison of generated images. Yellow arrows highlight anatomical issues due to 2D pose limitations. Blue
arrows refer to the individuals evaluated for correct body shape preservation. PersonaCraft excels in identity, body shape consistency, and
naturalness while being over twice as fast as OMG-based methods [S28, S33, S14].
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Figure S2. Additional comparison of generated images. Yellow arrows highlight anatomical issues in InstantID+OMG [S28, S14]
and IPAdapter+OMG [S33, S14] due to 2D pose limitations. DreamBooth [S25] shows severe distortions and clothing mismatches.
PersonaCraft excels in face identity, body shape consistency, and naturalness while being over twice as fast as OMG-based meth-
ods [S28, S33, S14].

5



Figure S3. Comparison of PersonaCraft with UniPortrait [S12], MS-Diffusion [S29], and FastComposer [S31]. Yellow arrows show
anatomical inconsistencies in poses and occlusions. MS-Diffusion copies clothing without proper adjustment.PersonaCraft excels in face
identity, body shape consistency, and naturalness compared to the baselines.
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Figure S4. Qualitative comparison of 3D-aware pose conditioning for multi-human generation, covering both single and multi-human
scenarios. PersonaCraft achieves superior alignment with the input pose while effectively handling occlusions, allowing for natural human
anatomy to be maintained even in complex multi-human interactions. Our method outperforms baselines in preserving identity, body shape,
and overall human realism. Yellow arrows highlight unnatural anatomical structures.
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Figure S5. Qualitative comparison of 3D-aware pose conditioning for multi-human generation, covering both single and multi-human
scenarios. PersonaCraft achieves superior alignment with the input pose while effectively handling occlusions, allowing for natural human
anatomy to be maintained even in complex multi-human interactions. Our method outperforms baselines in preserving identity, body shape,
and overall human realism. Yellow arrows highlight unnatural anatomical structures.
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Figure S6. Qualitative comparison of 3D-aware pose conditioning for multi-human generation, covering both single and multi-human
scenarios. PersonaCraft achieves superior alignment with the input pose while effectively handling occlusions, allowing for natural human
anatomy to be maintained even in complex multi-human interactions. Our method outperforms baselines in preserving identity, body shape,
and overall human realism. Yellow arrows highlight unnatural anatomical structures.
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Figure S7. Results of combining PersonaCraft with various style LoRAs, showcasing adaptability to styles like Pastel, JoJo, and Pokémon
Trainer. Some styles alter facial and body identities due to their bias, while producing visually impressive outcomes.
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Figure S8. Integration of SCNet with face personalization models like InstantID [S28], PhotoMaker V2 [S17] and IPAdapter-Face [S33]
achieves robust full-body customization, with slight variations by face module.

Figure S9. Effectiveness of dual-path body shape control. By combining SMPLx and text, our dual-pathway approach effectively enhances
body shape consistency, especially in difficult cases.

Figure S10. Robustness to SMPLx, depth errors. Our model handles pose perturbations (left) and infers occlusions from noisy depth
(right), with dual-pathway shape control further improving results.
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Figure S11. SMPLx control vs SMPL control. With its more detailed representation of hand and face poses, SMPLx offers greater
consistency and controllability over SMPL.

Figure S12. Ablation study on the conditioning scales of IdentityNet and SCNet, demonstrating improved identity preservation for face
and body shape as the conditioning scales increase.
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Figure S13. Ablation study on occlusion-aware 3D pose & shape conditioning. The combination of depth and normal as conditioning
inputs for SCNet achieves the best generation performance in occluded or complex regions. While using SCNet faces issues preserving
pose structure in fine-grained occluded regions, adding OccNet and OccCFG effectively addresses these problems.

Figure S14. Effect of our occlusion-aware CFG (OccCFG). Each label refers to the CFG scale applied to specific regions. ”Base=3” means
the CFG scale is 3 for all regions, while ”Base=3, Seg=5” indicates that the CFG scale is 5 for the human segmentation region. ”Occ”
refers to the occlusion mask region.

Figure S15. Failure cases. The accuracy of 3D human model fitting depends on the fitting algorithm used, and variations in fitting quality,
particularly when the reference data is incomplete or inaccurate, can impact the final output.
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B. Additional Experimental Details
B.1. Additional Implementation Details
Additional Details on Training Dataset. To account for
occlusion scenarios, we balance the MPII [S6] dataset with
a 2:1 ratio of single-person to multi-person images. Depth
clipping is applied during depth rendering to retain only val-
ues below 5, ensuring consistent quality. After preprocess-
ing, we curate a final dataset of 6,348 image-text-SMPLx-
parameter pairs. This carefully curated dataset enables ro-
bust model training with diverse 3D human poses, complex
interactions, and detailed human parameters such as body
shape and pose conditioning.
Details on Training of SCNet and OccNet. As illustrated

Figure S16. Training of SMPLx-ControlNet (SCNet) and Occlu-
sion Boundary Enhancer Network (OccNet).
in Fig. S16, the networks are trained separately, with SM-
PLx depth, normal maps, and occlusion masks extracted
from training images. The pretrained ControlNet [S34] is
fine-tuned with these 3D pose representations.

We base our SCNet on
controlnet-union-sdxl-1.0 [S32] and fine-
tune it for SMPLx [S22] depth-normal-ocluded edge
conditioning. The architecture supports more than 10 con-
trol types for high-resolution text-to-image generation, with
depth selected as the control type in our implementation.

We utilize 3D poses represented by SMPLx parameters,
which include 55 joints (22 body, 1 jaw, 2 eyes, and 30
hands) along with camera parameters (intrinsic and extrin-
sic). These parameters generate a vertex- and face-based
mesh that we render as SMPLx depth maps.

For depth edge extraction, we employed the Canny edge
detector for more robust edge extraction instead of thresh-
olding the spatial partial gradient of depth with τ , using a
low threshold of 5 and a high threshold of 15.
Details on Full-Body Personalized Image Synthesis. We
adopt MultiHMR [S8] as our SMPLx fitting method. Mul-
tiHMR is a single-shot model that reconstructs 3D human
meshes from a single RGB image, leveraging the SMPLx

parametric model to predict full-body meshes, including
hands and facial expressions, with 3D localization in the
camera coordinate system. The body shape parameters, β,
are represented as 10-dimensional vectors, each scaled by
orthonormal shape displacement components.

For facial identity processing, we employ the
antelopev2 facial detection and recognition mod-
els from InsightFace [S1] to extract 512-dimensional face
identity embeddings, f , from human images.

To enhance the visual quality of human-centric scenes,
we utilize the YamerMIX-v8 variant of SDXL. For face
identity personalization, we incorporate IdentityNet from
InstantID [S28], which enables instant, zero-shot, identity-
preserving image generation. IdentityNet enforces strong
semantic and weak spatial conditions by integrating facial
and landmark images with textual prompts to guide the gen-
eration process.

Following InstantID, we use five key facial landmarks
(two for the eyes, one for the nose, and two for the mouth)
as spatial control signals, providing a more generalized con-
straint than detailed key points.
Details on Dual-Pathway Body Shape Personalization.
In this method, a CLIP [S24] -based classifier is employed
to extract body shape attributes in the form of text descrip-
tions. These descriptions categorize the body type into vari-
ous categories, such as ”overweight,” ”muscular,” ”fat,” etc.
This is achieved by using a combination of CLIP, which
bridges the gap between vision and text, and specific re-
gional prompting techniques.

The body shape information is then used in Regional
Diffusion, a concept derived from MultiDiffusion [S7],
where each diffusion timestep involves conditioning on
both the body pose and a corresponding text description
about the individual’s body shape. The process operates
on each person’s instance throughout multiple diffusion
timesteps, ensuring that the shape-specific features are in-
corporated and aligned with the pose dynamics.

Incorporating these shape attributes into the diffusion
process allows the model to better represent personalized
body shapes in the generation process, resulting in a more
accurate and detailed synthesis of human shapes. This inte-
gration is achieved through the use of regional prompting,
where at each timestep, the model is conditioned on both
the body pose and the specific body shape description to re-
fine the body shape in the generated instance. This process
is further integrated with SCNet, a network that helps guide
the shape refinement and personalization.
User-Defined Body Shape Control. PersonaCraft en-
ables user-defined body shape control, allowing adjust-
ments based on user preferences: 1) Reference-based con-
trol: The target body shape parameter, βtarget, is ob-
tained from a reference image via SMPLx fitting. 2)
Interpolation/extrapolation-based control: Given two ref-
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erence body shape parameters, β1 and β2, the target shape
is computed as βtarget “ γβ1 ` p1´γqβ2, where γ controls
the interpolation/extrapolation ratio. The resulting βtarget .

B.2. Details on Metrics
Face identity preservation was measured for 1 „ 5 iden-
tities following FastComposer [S30], using FaceNet [S26]
for identity similarity within the face mask. The identity
similarity score is computed by averaging the non-negative
cosine similarity over both the number of humans and the
total number of images:

Sface “
1

Nimage

Nimage
ÿ

i“1

1

Nhuman,i

Nhuman,i
ÿ

j“1

max

˜

0,
f

pjq

ref,i ¨ f
pjq

gen,i

}f
pjq

ref,i}}f
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gen,i}

¸

(S1)
where f

pjq

ref,i and f
pjq

gen,i are the face embeddings for the j-th
reference and generated identity in the i-th image, respec-
tively. Nimage is the total number of images, and Nhuman,i is
the number of humans in the i-th image.
Body shape preservation was evaluated using cosine sim-
ilarity between the SMPLx body shape parameters β from
the reference and generated instances. The score is aver-
aged over both the number of humans and the total number
of test images:
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where β
pjq

ref,i and β
pjq

gen,i are the body shape parameters for
the j-th reference and generated instance in the i-th im-
age, respectively. Nimage is the total number of images, and
Nhuman,i is the number of humans in the i-th image.
CLIP similarity was measured using the CLIP-L/14 model
for image-text alignment. Cosine similarity was used to
evaluate the alignment between the generated image and the
textual description. The CLIP encoders Eimage and Etext were
used for the image and text embeddings, respectively. The
alignment score is averaged over all test images:

SCLIP “
1

Nimage

Nimage
ÿ

i“1

EimagepIgen,iq ¨ Etextpyref,iq

}EimagepIgen,iq}}Etextpyref,iq}
(S3)

where EimagepIgen,iq is the generated image embedding for
the i-th image, and Etextpyref,iq is the reference text embed-
ding.

B.3. Details on Baselines
To evaluate PersonaCraft, we compared it with several base-
lines for single-shot, multi-identity, and pose-controllable
image synthesis, all implemented using SDXL [S23]. Key

baselines include OMG [S14] for multi-concept personal-
ization, InstantID/IPAdapter [S28, S33] for single-shot per-
sonalization, 2D pose ControlNet [S34], and optimization-
based methods like DreamBooth [S25] and Texture Inver-
sion [S10].
OMG + InstantID/IPAdapter/IPA-Face. OMG [S14] in-
troduces a two-stage sampling solution for multi-concept
personalization. The first stage handles layout genera-
tion and occlusion management, while the second stage
integrates concepts using visual comprehension and noise
blending. OMG can also be combined with single-concept
models like InstantID without additional tuning. For
OMG+InstantID, we follow the official inference code
from the InstantID repository [S15]. For OMG+InstantID
and OMG+IPAdapter/IPA-Face, we replace InstantID with
IPAdapter and IPA-Face, respectively, to adapt the frame-
work for different face identity modules.
Textual Inversion. In original Textual Inversion [S10], text
embeddings are optimized for user-provided visual con-
cepts, linking them to new pseudo-words that can be seam-
lessly incorporated into future prompts, effectively per-
forming an inversion into the text-embedding space. To
enable single-reference, multi-concept personalization, we
optimize a unique text embedding Vpiq for each concept de-
rived from a single reference image. These embeddings
are paired with unique identifiers, allowing for the dynamic
integration of multiple concepts into prompts during infer-
ence, facilitating multi-concept personalization.
DreamBooth. In original DreamBooth [S25], the model
is fine-tuned with images and text prompts using a unique
identifier. A prior preservation loss is applied to encour-
age class diversity. For single-reference, multi-concept
personalization, we adopt DreamBooth-LoRA [S25, S13],
where each reference image is associated with a unique
Mpiq and identifier Vpiq. These are fine-tuned based on the
DreamBooth framework. During inference, both M and
identifiers are used simultaneously, enabling personalized,
concept-specific image generation from a single reference.

B.4. Details on User study

Personalized Multi-Human Scene Generation We con-
ducted a user study to assess the naturalness, face identity
preservation, body shape preservation, and text-image cor-
respondence of images generated by three baseline meth-
ods (one from each group) and our method. Participants
ranked the top three methods based on the following cri-
teria: 1) Text Correspondence: Rank the images based on
how closely they align with the textual description. 2) Face
Identity Preservation: Rank the images in order of how
well they reflect the face identity of the personalized charac-
ter. 3) Body Shape Personalization: Rank the images based
on how accurately they reflect the personalized character’s
body shape. 4) Naturalness: Rank the images in order of
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the most natural-looking, considering factors such as phys-
ically impossible appearances, illogical features, inconsis-
tencies, or lack of real-world physics and connections. The
study collected a total of 18,540 responses from 103 partic-
ipants across 15 cases, including both custom and COCO-
Wholebody scenarios. We present illustrative example im-
ages from the user study in Fig. S17.
Pose-Controlled Multi-Human Scene Generation We
conducted a user study to assess the text-image correspon-
dence, pose consistency and naturalness of images gen-
erated by three baseline methods (one from each group)
and our method. Participants ranked the top three methods
based on the following criteria:

1) Text Correspondence: Rank the images based on how
closely they align with the textual description. 2) Pose Con-
sistency: Rank the images based on how well they reflect
the given pose input. 3) Naturalness: Rank the images in
order of the most natural-looking, considering factors such
as physically impossible appearances, illogical features, in-
consistencies, or lack of real-world physics and connec-
tions. The study collected a total of 15,390 responses from
114 participants across 15 cases, including both custom and
COCO-Wholebody scenarios. We present illustrative ex-
ample images from the user study in Fig. S18.
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Figure S17. Example images from the user study for personalized multi-human scene generation.

Figure S18. Example images from the user study for pose-controlled multi-human scene generation.
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