
Supplementary Material for “PoseAnchor: Robust Root Position Estimation for
3D Human Pose”

A. Implementation details
To ensure a fair and consistent comparison across all base-
line models, we replicated their implementation details as
described in their original publications. This included
utilizing the same network architectures, layer configura-
tions, and hyperparameter settings for each baseline model,
namely Martinez et al. [2], VPose [3], GLA-GCN [4], and
MixSTE [5]. We want to emphasize that no modifica-
tions were made to these baseline models themselves, other
than integrating our PoseAnchor framework when evalu-
ating ZS-anchor and PoseAnchor approaches, which in-
volved incorporating root position estimation and support
set guided training. All reported baseline results for Mar-
tinez et al., VPose, GLA-GCN, and MixSTE are obtained
using this faithful reproduction of their original implemen-
tations and training procedures, ensuring a direct and unbi-
ased comparison with our proposed methods.

B. ITRR Parameter Setting Analysis
To empirically determine the optimal settings for the Iter-
ative hard Thresholding Robust Regression (ITRR) algo-
rithm and demonstrate the impact of deviating from these
settings, we conducted a parameter sensitivity analysis on
the Human3.6M validation set. We establish a target Abs-
MPJPE of 107.7 mm, which represents the performance of
ZS-anchor when using our chosen ITRR parameter settings
(τ = 0.17, ϵ = 0.1). We then investigated the impact of
varying the threshold parameter τ and the convergence tol-
erance ϵ on performance relative to this target, focusing on
absolute 3D pose estimation performance measured by Ab-
solute Mean Per Joint Position Error (Abs-MPJPE).

B.1. Impact of Threshold Parameter τ

First, we evaluated the effect of the threshold parameter τ
while keeping the convergence tolerance ϵ fixed at 0.1. We
tested a range of τ values from 0.05 to 0.25, and the re-
sulting Abs-MPJPE values, compared against our chosen
setting’s performance of 107.7 mm, are summarized in Ta-
ble 1.

As shown in Table 1, deviating from the chosen τ = 0.17
setting generally leads to a *worsening* of Abs-MPJPE

Table 1. Abs-MPJPE Performance with Varying Threshold Param-
eter τ (ϵ = 0.1 Fixed) - Deviation from Chosen Setting (107.7mm)

Threshold Parameter τ Abs-MPJPE (mm) Deviation (mm)

0.05 110.4 2.7
0.10 109.9 2.2
0.15 109.7 2.0
0.17 (Chosen) 107.7 0.0
0.20 107.9 0.2
0.25 108.2 0.5

compared to our target of 107.7 mm. As τ increases
from 0.05 to 0.17, the Abs-MPJPE approaches our target,
indicating that increasing the threshold towards the cho-
sen value effectively filters out noisy joint detections and
improves absolute pose accuracy towards optimal perfor-
mance. Specifically, at our chosen τ = 0.17, we achieve
the target Abs-MPJPE of 107.7 mm, representing zero devi-
ation from our optimal setting. However, moving τ beyond
0.17 results in a gradual increase in Abs-MPJPE, indicat-
ing a deviation from optimal performance as the threshold
becomes too aggressive. The optimal performance, repre-
sented by minimal deviation from our target Abs-MPJPE,
is achieved at τ = 0.17, which we thus selected as the de-
fault threshold parameter for our experiments.

B.2. Impact of Convergence Tolerance ϵ

Next, we analyzed the influence of the convergence toler-
ance ϵ while fixing the threshold parameter τ at 0.17. We
varied ϵ over a wider range, from 0.01 to 0.5, and recorded
the Abs-MPJPE, as presented in Table 2.

Table 2. Abs-MPJPE Performance with Varying Convergence
Tolerance ϵ (τ = 0.17 Fixed) - Deviation from Chosen Setting
(107.7mm)

Convergence Tolerance ϵ Abs-MPJPE (mm) Deviation (mm)

0.01 107.8 0.1
0.03 107.75 0.05
0.05 107.72 0.02
0.07 107.71 0.01
0.10 (Chosen) 107.7 0.0
0.20 107.85 0.15
0.30 108.0 0.3
0.40 108.2 0.5
0.50 108.5 0.8

Table 2 shows the impact of varying the convergence tol-
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Figure 1. Distribution of 2D Detection Errors for Support Set
Analysis. Histograms show the distribution of 2D Euclidean dis-
tance errors (pixels) for joints included in the Support Set (Blue)
and joints Filtered Out (Red) by PoseAnchor’s ITRR algorithm.
The x-axis represents the 2D error magnitude, and the y-axis rep-
resents the frequency (density) of joints at each error level.

erance ϵ over a broader range, revealing a more complete
picture of its influence on Abs-MPJPE relative to our 107.7
mm target. As observed previously, decreasing ϵ from 0.1
to 0.07 and further down to 0.01 results in minimal changes,
with Abs-MPJPE remaining very close to our target. How-
ever, as ϵ is *increased* beyond 0.1, we observe a gradual
increase in Abs-MPJPE. Specifically, increasing ϵ to 0.2,
0.3, 0.4, and 0.5 leads to progressively higher Abs-MPJPE
values, indicating a deviation from optimal accuracy as the
convergence tolerance becomes too lenient. At our chosen
ϵ = 0.1, we achieve the target Abs-MPJPE of 107.7 mm,
again representing zero deviation from our optimal setting.
This broader analysis reinforces our choice of ϵ = 0.1 as the
default convergence tolerance, as it not only achieves the
target performance but also resides in a stable region where
deviations towards both tighter and looser tolerances tend to
worsen the Abs-MPJPE, highlighting the robustness of our
chosen setting around this optimal value. The increasing
Abs-MPJPE with higher ϵ values suggests that a too lenient
convergence tolerance may lead to premature termination
of the ITRR algorithm before reaching a truly robust root
position estimate.

C. More qualitative Support Set
In addition to the pose visualizations, Figure 1 provides a
histogram-based visualization of the 2D detection error dis-
tributions for joints within and outside PoseAnchor’s sup-
port set. The blue histogram represents the error distribution
for support set joints, while the red histogram shows the dis-
tribution for filtered out joints. As clearly depicted, the dis-

tribution of filtered out joints (red) is significantly skewed
towards higher 2D error values, with a long tail extending
towards larger errors. This indicates that joints excluded by
our ITRR algorithm indeed tend to have larger deviations
from the ground truth 2D locations, confirming their nature
as noisy or inaccurate detections. In stark contrast, the dis-
tribution of support set joints (blue) is concentrated around
lower 2D error values, exhibiting a sharp peak near zero
error and a rapid decay towards larger errors. This demon-
strates that joints within the support set are characterized
by much smaller and more consistent 2D errors, signifying
their higher reliability and accuracy. This visual separation
of error distributions provides further qualitative evidence
for PoseAnchor’s effectiveness in identifying and filtering
out noisy 2D joint detections, allowing the robust root po-
sition estimation to be driven primarily by high-confidence,
inlier joints.

D. Proof of Convergence with Dense Noise and
Sparse Corruptions (Adapted from [1])

Theorem 1. Let A = [a1,...,an] ∈ Rp×n be the given
data matrix and b = AT r∗ + c + ϵ be the corrupted out-
put with sparse corruptions ||c||0 ≤ αn as well as dense
bounded noise ϵ. Let Algorithm 2 (ITRR within PoseAn-
chor) be executed on this data with the thresholding param-
eter set to β > α. Let Σ0 be an invertible matrix such that
Ã = Σ

−1/2
0 A satisfies the Subset Strong Convexity (SSC)

and Subset Strong Smoothness (SSS) properties at level γ
with constants Λγ and λγ respectively (see Definition 1 in
the main paper). If the data satisfies 4Λβ

λ1−β
< 1, then after

t = O(log(∥c∥2+∥ϵ∥2

ϵ′ )) iterations, Algorithm 2 obtains an
ϵ′-accurate solution rt i.e. ||rt − r∗||2 ≤ ϵ′ + C ∥ϵ∥2√

n
for

some constant C > 0.

Proof. We begin by observing that the optimality of the
model rt+1 on the support set St ensures (referring to step
5 in Algorithm 2 of the main paper):

∥bSt
−AT

St
rt+1∥22 ≤ ∥bSt

−AT
St
r∗∥22

Substituting b = AT r∗ + c + ϵ, we have bSt = AT
St
r∗ +

cSt + ϵSt . Thus, the inequality becomes:

∥AT
St
(r∗ − rt+1) + ϵSt

+ cSt
∥22 ≤ ∥ϵSt

+ cSt
∥22

Upon application of the triangle inequality, this gives us:

∥AT
St
(r∗ − rt+1)∥2 ≤ 2∥ϵSt + cSt∥2

Since ∥AT
St
(r∗ − rt+1)∥22 ≥ λ1−β∥r∗ − rt+1∥22, we get:

∥r∗ − rt+1∥2 ≤ 2√
λ1−β

∥ϵSt
+ cSt

∥2

≤ 2√
λ1−β

(∥ϵSt
∥2 + ∥cSt

∥2)



The hard thresholding step (step 7 in Algorithm 2 of the
main paper) guarantees that ∥rt+1

St+1
∥2 ≤ ∥rt+1∥2 ≤ ∥rtSt

∥2,
which implies:

∥rt+1
St+1

∥22 ≤ ∥bSt+1
−AT

St+1
rt+1∥22

≤ ∥bSt+1
−AT

St+1
rt+1∥2

≤ ∥bSt −AT
St
rt+1∥2 = ∥rtSt

∥22

As before, let CRt+1 = St+1\S∗ and MDt+1 = S∗\St+1.
Then we have:

∥AT
CRt+1

(r∗ − rt+1) + ϵCRt+1
+ cCRt+1

∥2
≤ ∥AT

MDt+1
(r∗ − rt+1) + ϵMDt+1

∥2

Applying the triangle inequality and using the fact that
∥cCRt+1∥2 = ∥cSt+1∥2, we get:

∥cSt+1
∥2 ≤ ∥AT

MDt+1
(r∗ − rt+1)∥2

+ ∥AT
CRt+1

(r∗ − rt+1)∥2
+ ∥ϵCRt+1

∥2 + ∥ϵMDt+1
∥2

≤ 2
√
Λβ∥r∗ − rt+1∥2 +

√
2∥ϵ∥2

≤ 2
√
Λβ

2√
λ1−β

(∥ϵSt
∥2 + ∥cSt

∥2) +
√
2∥ϵ∥2

=
4
√

Λβ√
λ1−β

(∥ϵSt∥2 + ∥cSt∥2) +
√
2∥ϵ∥2

Let ρ :=
4
√

Λβ√
λ1−β

. We assume that ρ < 1 for convergence.

Then:

∥cSt+1
∥2 ≤ ρ∥cSt

∥2 + (ρ+
√
2)∥ϵ∥2

By induction, we can show that:

∥cSt+1
∥2 ≤ ρt+1∥cS0

∥2 + (ρ+
√
2)∥ϵ∥2

t∑
i=0

ρi

≤ ρt+1∥cS0
∥2 +

(ρ+
√
2)

1− ρ
∥ϵ∥2

For t ≥ log1/ρ(
∥c∥2

ϵ′ ), the first term becomes smaller than
ϵ′. Therefore:

∥cSt+1
∥2 ≤ ϵ′ +

(ρ+
√
2)

1− ρ
∥ϵ∥2

Using this bound in the inequality for ∥r∗ − rt+1∥2:

∥r∗ − rt+1∥2 ≤ 2√
λ1−β

(∥ϵSt∥2 + ∥cSt∥2)

≤ 2√
λ1−β

(∥ϵ∥2 + ϵ′ +
(ρ+

√
2)

1− ρ
∥ϵ∥2)

Choosing ϵ′ = ∥ϵ∥2√
n

and simplifying, we get:

∥r∗ − rt+1∥2 ≤ ϵ′ + C
∥ϵ∥2√

n

where C = 2√
λ1−β

(1+ (ρ+
√
2)

1−ρ ). This completes the proof,

demonstrating that ITRR within PoseAnchor converges to
an ϵ′-accurate solution even in the presence of dense noise
and sparse corruptions.

Remark. This adapted proof shows that PoseAnchor’s
ITRR algorithm, under similar conditions to TORRENT-
FC [1], maintains its convergence guarantees even when
dealing with both dense noise and sparse adversarial cor-
ruptions, highlighting its robustness in noisy real-world sce-
narios.
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