ReFlex: Text-Guided Editing of Real Images in Rectified Flow
via Mid-Step Feature Extraction and Attention Adaptation

Supplementary Material

A. Additional preliminaries
A.1. Rectified flow

Rectified Flow models a transport map between two distri-
butions, 7 (real data) and 7 (typically N (0, I)), by con-
structing straight-line paths between samples. The transi-
tion along these paths is governed by an ODE with a time-
dependent velocity field V (Z;,t):

dZ, =V (Z,t)dt, te|0,1]. (1)

To define these straight paths, the forward process is formu-
lated as a linear interpolation:

Xt :tX1+(1—t)X0, XO ~ 70, X1 ~ 1. (2)

The velocity field V' (X3, t) is then trained to approximate
the dynamics of X;, given by dX; = (X; — Xy)dt, by
minimizing the following least squares objective:

1
min/ E [ - Xo) —o(Xn )] a3
v Jo

Once trained, sampling is performed by discretizing time
steps {t;}1,, where t7 = 1 and t; = 0, and solving
the ODE iteratively. Starting from a noise sample Z;, ~
N(0, I), the velocity field updates Z; at each step:

Zt'i—l =7 + (t,‘_l — t,‘)V(Zti,ti), 1=T,...,1. 4

i

This process gradually transforms the initial noise sample
Zy,. into a structured sample following the learned data dis-
tribution 7, effectively generating an image from noise.

A.2. FLUX

FLUX [17] is one of the state-of-the-art open-source text-
to-image models based on rectified flow and MM-DiT.
It extends MM-DiT by introducing two specialized block
types: Double-Stream Block and Single-Stream Block. The
Double-Stream Block uses separate @, K, V projection ma-
trices and modulation layers for text and image tokens,
whereas the Single-Stream Block shares these layers across
both modalities. FLUX employs Double-Stream Blocks in
the first 19 layers and Single-Stream Blocks in the remain-
ing 38 layers.

B. Implementation Details

B.1. Implementation details for feature analysis

In Sec. 4.1, we conducted an analysis of the intermediate
features within the MM-DiT block. Our analysis involves

extracting each intermediate feature during the source im-
age generation process and injecting it into the target image
generation process to examine the resulting outputs. For the
attention components, we use each component from the first
25 single-stream blocks, as they span slightly more than the
middle third of the model. This setting is motivated by pre-
vious works in DM [4, 11, 36], which found that injecting
attention from the middle or later layers is effective. For
the residual components, we use the features from the last
six double-stream blocks and the first four single-stream
blocks.

B.2. Implementation details for our method

Injection layers In Fig. S.1, we conduct an ablation study
to determine the suitable layers for extracting residual and
attention features in our experimental setting, where three
key features are injected, and two attention adaptation meth-
ods are applied. Fig. S.1(a) presents the ablation results for
residual feature layers. Our findings indicate that extracting
residual features from the last six double-stream blocks and
the first single-stream block (13~19) achieves a balanced
trade-off between structure preservation and editability. We
found that increasing the number of single-stream blocks
restricts editability, whereas using too few double-stream
blocks or omitting the single-stream block may results in
insufficient structural preservation. Fig. S.1(b) presents the
ablation results for attention layers. We found that using
attention from layers 20 to 45 achieved the best balance
between structure preservation and editability, whereas ex-
tending attention injection to layer 35 weakened structure
preservation, and further extending it to layer 55 limit
the editability. Unlike U-Net, FLUX does not follow an
encoder-decoder structure and consists of 57 layers at the
same resolution, making it challenging to analyze the spe-
cific roles of individual layers. Therefore, we recognize that
our findings have room for further refinement and expect
that the current setting we identified will serve as a building
block for future advancements.

Noised inversion The inversion process is typically per-
formed by reversing the sampling process described in
Eq. (4), starting from z,. However, we observed that di-
rectly using z for inversion can lead to an unnatural z7.
We attribute this to the model perceiving zg, which corre-
sponds to a clean latent, as an out-of-distribution sample,
because the model primarily processes noised samples as
input, except at t = 0. To mitigate this issue, we introduce a
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(a) Ablation examples for assessing the impact of layer selection for resid-
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Figure S.1. Ablation examples for determining the layers for spa-
tial feature and attention injection in (a) and (b), respectively.

noising step before reversing the sampling process. Specif-
ically, we first sample random noise ¢ ~ N(0, ) from a
standard Gaussian distribution. Then, using Eq. (2), we per-
form n forward steps to generate a noised latent z,,, defined
as: zp =ty -€+ (1 —t,) - zo. Finally, we reverse Eq. (4) for
T —n steps to obtain z7. In Fig. S.2, we present the results of
generating images using zp obtained with and without the
noising step. We observed that the latent obtained with the
noising step produced images well aligned with the target
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Figure S.2. We compare two approaches for obtaining z7: one
where zr is obtained by directly inverting zo, and another where
zT is obtained by applying n noising steps to reach z,, before per-
forming inversion.

prompt, whereas zp obtained without the noising step failed
to achieve full alignment. Therefore, we introduce noised
inversion, where a noising step is applied to the clean latent
before reversing the sampling process, setting n = 7 in our
experiment. However, it also introduces a degree of stochas-
ticity, as the added noise affects the inversion process. The
implications of this limitation are further discussed in Ap-
pendix F.

I2I-SA adaptation We observed that during the early
stages of image generation, when abstract structural infor-
mation is being formed, using smaller k values can be help-
ful for overall source structure preservation. Therefore, we
apply I12I-SA adaptation after a few initial steps. When I2T-
CA injection is not used, adaptation starts from the 4th step,
whereas when I2T-CA injection is applied, it starts from the
2nd step.

B.3. Baseline implementation

In this section, we describe the implementation details of
the baselines we used.

For SD-based baselines, we primarily use results
provided by PnPlnversion [I4] when available. For
SDEdit [21] and P2P-Zero [25], we use their Diffusers
implementation [38]. We set the noising level to 0.75 for
SDEdit and generate the source prompt for P2P-Zero using
BLIP [18], following the offical example.

For RF-Inversion [32], we used the official Diffusers
implementation [38]. The stopping time, 7, was set to 6,
and the strength, 1, was set to 0.9.

For RF-Solver [39], we used the official GitHub repos-
itory [42]. Following the ‘boy’ example in the official
GitHub repository, the num_steps was set to 15, and the
inject was set to 2.

For FireFlow [7], we used the official GitHub reposito-
ries [ 12]. Following the ‘boy’ example in the official GitHub
repository, the num_steps was set to 8, and the inject
was set to 1.

For Flowedit [15] we used the official Github reposito-
ries [9] and used their default setting for FLUX.

C. Additional qualitative evaluation

We conducted additional qualitative comparisons with base-
line methods. Extended comparison results on PIE-Bench



and Wild-TI2I-Real are presented in Fig. S.3 and Fig. S.4,
respectively. We also provided our additional editing results
in Fig. S.5 and Fig. S.6. For the comparisons in Fig. S.3 and
Fig. S.4, we set the I2T-SA adaptation parameter & to 20. In
Fig. S.5 and Fig. S.6, k was set to 20 for the first, second,
and last rows, 40 for the third row, and 80 for the fourth row.
In the last row, where no source prompt was provided, the
method was applied without I2T-CA injection.

D. Additional quantitative comparison
D.1. PIE-Bench

We report the full results of the quantitative evaluation on
PIE-Bench [14] in Tab. S.2. We measure Structure Dis-
tance [35], PSNR, LPIPS [43], MSE, and SSIM [41] to as-
sess source preservation. For text-alignment, we compute
CLIP text similarity [27] for both the entire image and
within the editing mask, referred to as Whole Image Clip
Similarity and Edit Region Clip Similarity, respectively.

For hyperparameters, we report results using k£ = 20, 40
and m = 0.77,T, where k is the number of replaced keys
in I2I-SA adaptation, and m is the number of steps for ap-
plying latent blending. Our method outperforms the base-
lines across various metrics. Our method not only effec-
tively generates images that align with target prompts, but
also well preserves the original information of the source
images. It is noteworthy that FLUX-based methods tend
to lose background information of the source image, and
SD-based methods struggle to accurately follow the target
prompts, while our method addresses both challenges. We
found that increasing m improves background preservation
of the source image. However, setting m = 1" creates an
unnatural border between masked and unmasked regions,
so we set m = (.71 as the default.

D.2. Limitation of existing structure distance metric

Previous studies [14, 36] have used the difference in the
self-similarity of DINO-ViT [5]’s value features as a mea-
sure of structure distance [35] to quantify structural sim-
ilarity between images. However, as shown in Fig. S.7,
we found that structure distance often fails to provide re-
liable measurements when significant semantic changes oc-
cur, such as large differences in color distribution. There-
fore, in Sec. 5.2, we conduct a quantitative analysis using
alternative metrics to measure source preservation. Specifi-
cally, we use background PSNR in PIE-Bench and compute
the ToU of subject segmentation masks in Wild-TI2I-Real.

D.3. Details on User Studies

For the two user studies presented in Sec. 5.3, we used
Amazon Mechanical Turk (MTurk) to collect responses,
requiring participants to have over 500 HIT approvals, an
approval rate above 98%, and US residency. Each partic-

ipant was presented with five images—generated from the
same source image and target prompt but using different
methods—and asked: “Which edited image best aligns with
the target description while preserving most of the struc-
tural details (e.g., pose, shape, or position of subjects) from
the source image?” We excluded responses from partici-
pants who did not follow the survey instructions. In total,
we collected 1410 answers from 97 valid participants for
the FLUX-based comparison and 1530 answers from 102
valid participants for the SD-based comparison, with each
participant answering 15 questions. An illustration of our
user study is provided in Figure S.8.

E. Additional examples of ablation studies on
each technique

In this section, we provide additional examples for the ab-
lation study conducted in Sec. 5.4.

Ablation study on the role of key techniques is provided
in Fig. S.9. we conducted an ablation study on four key tech-
niques of our method: mid-step feature extraction, I2T-CA
adaptation, I2I-SA adaptation, and latent blending.

Effect of varing ¢’ in mid-step feature extraction is pro-
vided in Fig. S.10.

Effect of varing & in I2I-SA adaptation is provided in
Fig. S.10.

Effect of varing o in I2T-CA adaptation is provided in
Fig. S.12. With o = 1, the model fails to accurately align
the generated images with the text prompt, whereas increas-
ing a improves alignment. However, too large oo compro-
mises source structure information, making it crucial to
choose an appropriate o. We set « = 4 for all following
experiments.

F. Limitations

Fig. S.13 illustrates the limitations of our method. (a) When
the edited region overlaps with the subject, it may unin-
tentionally change other features of the subject. (b) If the
editing mask generated from I2T-CA does not perfectly lo-
calize the editing region, it may result in ineffective edit-
ing. Using a ground-truth mask can effectively address this
issue. (c) Since our method produces different editing re-
sults depending on the random seed, it can sometimes lead
to editing failures. (d) Our method shows slower inference
speed compared to other baselines, primarily because it can-
not leverage FlashAttention, which provides significant ac-
celeration. This limitation arises from our need to store at-
tention maps—a feature not supported by FlashAttention.
We provide inference time comparison of FLUX-based ap-
proaches in Tab. S.1.



Method ‘Ours RF-Inversion RF-Edit FireFlow FlowEdit
Time Cost (Sec.) ‘ 90.8s 54.3s 93.3s 18.2s 15.6s

Table S.1. Inference time comparison of FLUX-based approaches.

G. Societal Impact

Our work introduces a new Rectified Flow-based real-image
editing method that significantly enhances text alignment.
This approach allows users to easily edit real images us-
ing text prompts and obtain high-quality results. However,
like most real-image editing methods, it carries the risk of
misuse by malicious users. Fortunately, extensive research
has been conducted to prevent the generation of ethically
problematic content, such as violent imagery. We believe
that our analysis of Rectified Flow features can contribute
to ongoing efforts to restrict the creation of such harmful
content.
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Figure S.3. Additional evaluation comparisons on PIE-bench
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Figure S.4. Additional qulitative evaluation on Wild-TI2I-Real
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Figure S.5. Diverse edited results of our method.



Source image

8 votebook, pencil, dnd comerd on & (cartoon of) & [ote with mountdins in “ [;“:;//_ r.naara/"oﬁ 3 small bird is
the bc?céground S(and/'mg on the grocmd

a vase (plont) sitting on & table near 8 red apple (and & bird) sitting on Bchorchn the countryside with &
8 window fo/ﬁ ofd woad?m fdb/f’ IpPVICP and trees

8 roomd (square) coke with oronge
ﬁ“osfing on d wooden /y/c?t‘e

a /J/rofohec?/z'jfz'c I‘rnc?ge ofc? wooden a /jhofohec?/z'jfz'c I‘rwc?ge ofc? }"Pd fol=lal
bear set against the vibrant urbon
backdrop of New Tork City

a /Jhofo of//om

Figure S.6. Diverse edited results of our method.
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Figure S.7. Limitation of existing structure distance metric. The structure distance between each edited image and the source image is
displayed below the corresponding edited image.

Method Model Structure Background Preservation Clip Similarity
Distancex 103 \L PSNR T LPIPS %103 J, MSEX 104 \l/ SSIMX 102 T Whole T Edited T

DDIM + P2P SD 69.43 17.87 208.80 219.88 71.14 25.01 22.44
NT + P2P SD 13.44 27.03 60.67 35.86 84.11 24.75 21.86
DirectInversion + P2P SD 11.65 27.22 54.55 32.86 84.76 25.02 22.10
DirectInversion + PnP SD 2429 22.46 106.06 80.45 79.68 2541 22.62
RF-Inversion FLUX 47.26 20.14 203.82 139.08 70.42 25.84 22.90
RF-Edit FLUX 25.86 25.35 128.85 48.25 85.28 2541 2222
Fire Flow FLUX 21.13 25.98 113.18 42.82 86.73 2548 2223
Flow Edit FLUX 27.43 22.03 106.47 93.23 84.39 26.07 22.79
Ours (k=20, m=0.7T) | FLUX 40.30 24.21 112.55 76.74 83.01 26.51 23.17
Ours (k=40, m=0.7T) | FLUX 41.63 24.03 113.91 79.05 82.88 26.62 23.37
Ours (k=20, m=T) FLUX 35.42 28.05 57.87 57.30 92.08 26.30 23.05
Ours (k=40, m=T) FLUX 36.65 27.83 58.94 59.10 91.99 26.41 23.23

Table S.2. Quantitative evaluation on PIE-Bench. The best score is highlighted in bold, and the second-best score is underlined.



Q. Which edited image best aligns with the target description, while preserving most of the structural details (e.g. pose, shape, or position of subjects) from
the source image?

[Source image]

O @) @) @) @)

Figure S.8. Example screenshot from the user study, displaying images generated using different methods, where participants selected the
one that best represents the intended edit.
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Figure S.9. Ablation examples for assessing the impact of each technique in our method, including latent blending, which is explained in
Sec. 4.4.
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Figure S.10. Effect of the ' selection in mid-step feature extraction, where ¢’ is the timestep of the latent from which features are extracted.
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Figure S.11. Effect of varying k in 12I-SA adaptation, where k£ denotes the number of top attention values replaced.



PIE-Bench

Wild-TI2I-Real

Source image a=1 a=2 a=4 a=6 a=38 a=10

] i wmc?m [mbof] 1 38 black tank f/ﬂ and /ﬂz’mk ShofS s about to hl 3 tennis ball )

0 % x
E 6’ 0 s /TN

8 cartoon man (and & bird)

an image of Poddington the bear

B e

a3 /yhofo ofé) SI/VPk k‘obof

Figure S.12. Effect of varying « in I2I-SA adaptation, where o denotes the scale factor of the I2I-SA adaptation.



(a) Incomplete source preservation
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(b) Limitation of editing mask generation
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(c) Variability in Editing Results
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Figure S.13. Limitations of our method. (a) Incomplete preservation of source image details, when the edited region overlaps with the
subject; (b) Limitation of editing mask generation; (c) Variability in editing results arises from the random seed.
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