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A. Text Conditioning in Diffusion Models
Following the findings from [67], we report the perfor-
mance of Diff-C in two text conditioning scenarios: i)
empty prompt and ii) a meaningful prompt, e.g., “a photo
of a {class name}, a type of pet”, with the class name
first inferred through a zero-shot classification with CLIP.
The motivation behind reporting both scores is to provide
a comprehensive understanding of how text conditioning
affects visual features at each layer. We report the clas-
sification performance with and without CLIP-inferred
captions in Tables 6, 7, and 8. We note that passing
specific class information inferred from CLIP generally
helps across all three datasets, layers, and timesteps. To
further understand how specific the captions should be, we
experiment by passing a generic prompt, e.g., “a photo of a
pet” during the diffusion process. As shown in Table 9 for
up ft1 layer, on Oxford-IIIT Pet [44], compared to the
base setting of passing in an empty prompt, using a generic
prompt leads to a performance drop by 3.14%. This indi-
cates that the specificity of the text being used to condition
directly impacts feature representation quality, where more
targeted prompts align better with class-relevant features,
thereby improving model accuracy. Consequently, using
precise text conditioning can lead to considerable gains
in performance, particularly in distinguishing nuanced
categories. However, this may not always be the case as
described in Sec. 4.7, where for FGVC-Aircraft [38] con-
ditioning with the class names led to a dip in classification
performance.

B. Layer-wise PCA Analysis of Feature Maps
Figures 11 and 12 provides more evidence to the findings
in Sec. 4.5. by highlighting differences in how SD 1.5 and
DiT encode spatial information. In SD 1.5, the feature maps
reveal well-defined spatial structures, with consistent colors
and textures that correspond to specific regions in the im-
age. By contrast, the feature maps of DiT display blended
patterns, suggesting a stronger focus on capturing global
context rather than emphasizing distinct spatial details.

C. Additional Details on the Visual Reasoning
Task

Hyper-parameters: We adopt the same hyperparameters
used in the the LLaVA-Lightning [34] configuration across
all experiments. We use MPT-7B-Chat [58] as the language
model, and CLIP ViT-L/14 [49], DINOv2 ViT-L/14 [43],

SD 1.5 as the vision encoders. We show the training hyper-
parameters in Table 12. All experiments were conducted
using a maximum of 4 NVIDIA RTX A6000 GPUs.

Pre-training datasets: Following LLaVA-Lightning [34],
we use CC595k [55] for stage 1 pre-training, to align the vi-
sual encoder with the language model to establish a shared
vision-language representation, by tuning the adapter.
For stage 2 fine-tuning we use LLaVA-Instruct-80K [34]
to fine-tune the model to enhance instruction-following
capabilities.

Adapter settings: For experiments involving CLIP and
DINOv2 features, we use the standard 2 layer MLP
projector to align visual tokens with language tokens [34].
To obtain tokenized representations from the feature maps
obtained from SD 1.5, we first add a 2 layer convolutional
block and transform the feature map into pseudo-tokenized
representations that match the token embedding dimensions
of CLIP and DINOv2. These pseudo-tokenized represen-
tations are then passed into the 2 layer MLP projector for
alignment.

Interleaving diffusion features with CLIP for visual
reasoning tasks: For the experiments reported in Sec. 4.6,
we first gradually reduce the spatial dimension of up ft1
from 1280 ⇥ 32 ⇥ 32 to 256 ⇥ 1024 to match the token
dimensions of CLIP vision embeddings. Next, we pro-
cess these embeddings through two separate multi-layer
projection layers resulting in projected embeddings of
shape 256 ⇥ 4096. Finally, we interleave the projected
token embeddings as done in [62] before passing them into
LLaVA [34].

Performance: Table 11 compares the performance of dif-
ferent vision encoders in LLaVA, including CLIP (Ta-
ble 11a), CLIP+DINOv2 (Table 11b), and CLIP+Diffusion
at timesteps t = 25 (Table 11c) and t = 200 (Ta-
ble 11d). The evaluation is conducted on the LLaVA-Bench
(in-the-wild) [34] benchmark. The benchmark evaluates
models across four categories: overall performance (‘all’),
complex reasoning (‘LLaVA Bench complex’), conversa-
tional tasks (‘LLaVA Bench conversational’), and descrip-
tive tasks (‘LLaVA Bench detail’).

For the ‘detail’ category, CLIP+Diffusion at t = 25
achieves the highest relative score of 56.2, outperform-
ing both CLIP (50.4) and CLIP+DINOv2 (37.7). This
demonstrates that the interleaved diffusion and CLIP fea-
tures effectively capture fine-grained visual details. In the



Timestep (t) bottleneck (empty / from CLIP) up ft0 (empty / from CLIP) up ft1 (empty / from CLIP) up ft2 (empty / from CLIP)

0 52.27 / 52.74 48.79 / 49.06 64.09 / 62.826 50.55 / 49.15
25 51.76 / 54.88 50.49 / 51.19 65.07 / 63.69 50.25 / 49.21

100 51.07 / 55.12 49.48 / 51.10 64.15 / 64.98 51.37 / 50.53
200 50.91 / 52.51 49.63 / 49.99 63.88 / 63.13 50.53 / 50.55

Table 6. Top-1 accuracy at different timesteps and layers for fine-grained task (FGVC-Aircraft).

Timestep (t) bottleneck (empty / from CLIP) up ft0 (empty / from CLIP) up ft1 (empty / from CLIP) up ft2 (empty / from CLIP)

0 68.79 / 84.33 66.99 / 79.50 88.28 / 90.11 77.79 / 80.67
25 69.97 / 85.25 73.29 / 84.17 88.61 / 90.68 81.63 / 85.28

100 69.53 / 85.88 67.07 / 81.33 88.29 / 90.97 78.82 / 84.36
200 68.03 / 86.43 65.87 / 81.79 86.89 / 90.32 78.49 / 84.79

Table 7. Top-1 accuracy at different timesteps and layers for fine-grained task (Oxford-IIIT Pet).

Timestep (t) bottleneck (empty / from CLIP) up ft0 (empty / from CLIP) up ft1 (empty / from CLIP) up ft2 (empty / from CLIP)

0 85.83 / 92.13 85.75 / 89.68 86.75 / 88.18 79.11 / 80.28
25 87.59 / 91.32 86.54 / 90.81 87.72 / 91.08 81.07 / 82.69

100 88.28 / 92.41 88.18 / 90.66 87.99 / 92.05 82.02 / 84.73
200 88.36 / 91.65 87.23 / 90.73 89.22 / 92.26 82.69 / 85.63

Table 8. Top-1 accuracy at different timesteps for coarse-grained task (Caltech-101).

Prompt Type
Timestep

25 200

Empty Prompt 88.61 86.89
from CLIP 2.34 " 3.94 "

generic 3.14 # 3.13 #

Table 9. Performance vs Text Conditioning on Oxford-IIIT Pet using
up ft1: Using a generic prompt (“A photo of a pet”) leads to a dip in
classification performance compared to using an empty prompt. By con-
trast, using a targeted caption (“A photo of a {class name}, a type of
pet”) leads to a boost in performance.

Layer Output Shape Description
conv1 [B, 1024, H,W ] conv2D, 3 ⇥ 3
conv2 [B, 1024, H/2,W/2] conv2D, 3 ⇥ 3, stride 2
conv3 [B, 1024, H/4,W/4] conv2D, 3 ⇥ 3, stride 2
conv4 [B, 1024, H/8,W/8] conv2D, 3 ⇥ 3, stride 2
GAP [B, 1024, 1, 1] global average pooling
FC [B, NUM CLASSES] flatten + FC layer

Table 10. Architecture of Diff-C (40M params).

‘complex’ category, CLIP+Diffusion at t = 200 achieves
the highest relative score of 70.5, surpassing CLIP (68.4).
At t = 25, CLIP+Diffusion scores 67.9 indicating that
the coarser-grained features extracted at higher timesteps
(t = 200) seem more effective for this specific task that re-
quires broader contextual understanding. Next, for the ‘con-
versational’ category, CLIP+Diffusion at t = 25 achieves a
relative score of 51.3, outperforming both CLIP (43.9) and
CLIP+DINOv2 (35.6). The interleaving of diffusion and

CLIP features significantly enhances the model’s ability to
handle visually grounded conversational tasks effectively.

Finally, we report the overall performance under the
‘all’ category and note that CLIP+Diffusion achieves a
superior performance with a score of 59.9 at t = 25,
outperforming CLIP’s standalone score of 56.6. This
reinforces the power of the visual representations learnt
from the diffusion process in achieving top-performance on
diverse vision-language tasks.

D. Additional k-SAE Visualizations
DiT vs U-Net: In this section, we provide additional
visualizations of k-SAE features. As shown in Fig. 13
(b), (e), Block 14 of DiT captures more class-specific
information than other blocks which is qualitatively cor-
roborated in Table 2d. However, compared to SD 1.5, DiT
captures less distinct class information, as seen in the snow
background in Fig. 13 (h). Moreover, the spatially related
photographic styles observed in Sec. 4.5 do not emerge in
DiT. We hypothesize that the transformer-based relies less
on inductive bias information compared to UNet-based SD
1.5, as discussed in Sec. 4.5.

Later timesteps: Figure 14 presents k-SAE visualization
at t = 500 for SD 1.5. Compared to t = 25, features
at t = 500 focus more on low-level information, such as
texture and low-light, which is qualitatively corroborated in



Figure 11. PCA Feature Maps SD-1.5 on images from UnRel [47] - Consistency of colors and textures (at up ft1, up ft2) suggests that the model preserves
local details and spatial relationships

Figure 12. PCA Feature Maps DiT on images from UnRel [47] - The blending of colors suggests that the model encodes global relationships while
maintaining a holistic representation of spatial structures, rather than isolating precise local details.

Table 2b. We hypothesize that as the diffusion timestep in-
creases, so does the added noise, rendering the features less
useful for transfer learning, consistent with our observations
in Sec. 4.4.

E. Additional k-SAE Experiments
Effect of image resolutions: To assess the robustness of
our method across varying input resolutions, we conduct
additional experiments examining the effect of image reso-
lution. As shown in Table 13, using different image resolu-
tions exhibits a similar trend in terms of �label, with smaller
resolutions resulting in slightly reduced variance across dif-



Category Relative Score GPT-4 Score LLaVA Score

All 56.6 82.7 46.8
LLaVA Bench complex 68.4 80.4 55.0
LLaVA Bench conversational 43.9 87.1 38.2
LLaVA Bench detail 50.4 82.0 41.3

(a) CLIP LLaVA

Category Relative Score GPT-4 Score LLaVA Score

All 47.0 84.8 39.8
LLaVA Bench complex 59.9 81.1 48.6
LLaVA Bench conversational 35.6 94.1 33.5
LLaVA Bench detail 37.7 81.3 30.7

(b) CLIP+DINOv2 LLaVA

Category Relative Score GPT-4 Score LLaVA Score

All 59.9 83.2 49.8
LLaVA Bench complex 67.9 80.0 54.3
LLaVA Bench conversational 51.3 90.6 46.5
LLaVA Bench detail 56.2 80.7 45.3

(c) CLIP+Diffusion (t = 25) LLaVA

Category Relative Score GPT-4 Score LLaVA Score

All 56.8 83.7 47.5
LLaVA Bench complex 70.5 80.0 56.4
LLaVA Bench conversational 45.6 87.7 40.0
LLaVA Bench detail 45.7 86.0 39.3

(d) CLIP+Diffusion (t = 200) LLaVA

Table 11. Performance on the multi-modal reasoning task for various
LLaVA configurations. The integration of Diffusion features with CLIP
improves performance across all tasks, with notable gains in the ‘detail’
and ‘conversational’ categories.

Hyperparameter
Stage

Stage 1 Stage 2

batch size 128 128
learning rate (lr) 2e-3 2e-5
lr schedule decay cosine cosine
lr warmup ratio 0.03 0.03
weight decay 0 0
epoch 1 1
optimizer AdamW [35]
deepspeed stage 2 3

Table 12. Hyperparameters for LLaVA-Lightning (default setting)

ferent DiT blocks on Oxford-IIIT Pet.

F. Additional Implementation Details
In this section, we provide additional implementation de-
tails for training k-SAE. We set the expansion factor for

DiT Supp 

Block 6 Block 14 Block 22

(a) Sky background (c) Black-specific

(d) Light-color specific (e) Newfoundland

(b) Molosser breeds

(f) Warm-color specific

(g) Black-specific (i) Black and white(h) Snow background

Figure 13. k-SAE visualizations of the blocks on Oxford-IIIT Pet at
t = 25. Block 14 mainly captures class-specific information, while
other blocks focus more on less distinct features.

Pets up1, t=25, SD21

(a) Texture (d) Low-light

up_ft1

Figure 14. k-SAE visualizations on Oxford-IIIT Pet of up ft1 UNet
layer at t = 500. In contrast to the earlier timestep (Fig 3), t = 500
appears to focus more on low-level features.

Block
Oxford-IIIT Pet
(512) (256)

6 10.18 10.36
10 9.44 10.16
14 9.05 10.06
18 9.55 10.11
22 9.84 10.13

Table 13. Label purity (�label) measured by computing the average
standard deviation of the class labels of the top-10 most highly activat-
ing images among the top 1000 most highly activating features of the
learned k-SAEs for different DiT blocks with different resolutions on
Oxford-IIIT Pet. Lower is better.

the k-SAE to 64, following prior work [22], resulting in
n = 1280⇥64 = 81, 920 latents for SD and n = 1152⇥64 =
73, 728 latents for DiT. We apply a unit normalization con-
straint [54] on the decoder weights Wdec of the k-SAE after
each update. We use the Adam [31] optimizer with a learn-



ing rate of 0.0004 and apply a constant warm up for 500
steps. The total training time is approximately 1 hour with
⇠18 GB peak memory on 1 NVIDIA RTX A6000 GPU
trained for 10M steps.

G. Additional Details of Evaluation
In this section, we provide additional details on how we
quantify the granularity of semantic information in diffu-
sion features through a multiple-choice question-answering
task, as discussed in Sec. 4.3. Using GPT-4o [3], we eval-
uate the level of semantic detail captured by different diffu-
sion features. Table 14 presents the prompt used to query
the model for this evaluation. Specifically, we assess the
model’s predictions based on the top 10 most highly ac-
tivating images among the top 100 most highly activating
neurons of the learned k-SAE.

Prompt: Each set of images captures
different types of patterns:

1. Class-specific information (e.g., fine-
grained details, animals of the same
breed).

2. Moderately granular features (e.g.,
similar-looking animals irrespective
of their position).

3. Very coarse information (e.g.,
foreground objects similarly placed
relative to the background).

4. Could not detect patterns (e.g., noisy
or no specific patterns).

Select only one number (1, 2, 3, or 4)
that best describes the shared pattern

**Respond with just the number and nothing
else.**

Table 14. Input prompt for GPT-4o based evaluation.
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