
Supplementary Material for
Robust 3D-Masked Part-level Editing in 3D Gaussian Splatting

with Regularized Score Distillation Sampling

S.1. Additional details on quantitative results

S.1.1. Experimental setting

S.1.1.1. Comparison with 3D Gaussian editing models
We collected human face scenes from the IN2N [12] and
Nerf-Art [33] datasets. For each facial part: ‘eyes’, ‘nose’,
‘mouth’ and ‘hair’, we applied five editing prompts: ‘silver-
textured’, ‘gold-textured’, ‘diamond’, ‘green’, ‘pink’ to
evaluate editing success. Additionally, we designed five
prompts requiring drastic changes: ‘delicious croissant
nose’, ‘hair made of metallic gears, steampunk style’, ‘hair
on fire, red and blue flame’, ‘hair covered with beautiful
butterfly’, ‘left blue and right green eye’, and categorized
them as ‘hard’ to assess extreme editing performance. For
models incorporating InstructPix2Pix [2] in their pipelines,
we adapted the prompts to the format: “Turn ... into ...”.

S.1.1.2. Comparison with 3D Gaussian generation mod-
els

To prove that our local 3D editing method enhances con-
trollability in 3D content generation, we designed prompts
for samples that were challenging for previous 3D gener-
ation methods to create. The prompts included: ‘A beau-
tiful woman with a cheek’s beak’, ‘A woman with cloudy
hair’, ‘A beautiful woman with butterfly hair’, ‘A snail with
skyscapes inside its shell’, and ‘A vase with a yellow tulip
and a stained glass-textured rose’. We tasked 3D genera-
tion models with directly generating 3D content from these
prompts. In our approach, we first generated the base ob-
jects, such as ‘A snail’, then applied these prompts as edit-
ing instructions to assess whether our method could suc-
cessfully produce the desired samples.

User Study We conducted a user study across three cate-
gories: (1) Alignment - Is the 3D Gaussian edited to match
the text? (2) Fidelity - Does the image look visually ap-
pleaing? (3) Accuracy - Were only the specified parts edited
correctly?. Users were asked to score a 4-point scale, and
we averaged it for mean opinion score (MOS). For recon-
structed scene, participants evaluated all three criteria, col-
lecting 4,680 responses from 260 respondents. For gener-
ated 3D, evaluations were based on alignment and fidelity,
yielding 2,600 responses from 260 respondents.

S.1.1.3. Metrics
CLIP and CLIP directional score The CLIP-based met-
rics calculate the cosine similarity between text and im-
age features extracted using CLIP [26]. CLIP scores are
commonly utilized in evaluating text-to-3D [20, 24, 31].
CLIP directional scores are specifically employed to eval-
uate whether the changes occurred in the desired direction,
first introduced by [10] and adopted mostly by editing mod-
els [3, 4, 7, 35]. We used the ViT-L/14 version of the model,
with images cropped to 512 pixels and resized to 336 pixels
before being input into the model.

TIFA and BLIP score While CLIP-based metrics effec-
tively evaluate coarse similarity between image and text,
they have limitations in assessing fine-grained correspon-
dences [1, 7, 13, 14, 29]. To address this, we adopted
two additional evaluation metrics focused on fine-grained
visual-textual alignment, based on visual question answer-
ing (VQA). The TIFA score, introduced in [13], mea-
sures the faithfulness of generated image to text input by
generating questions with LLaMA2 [30], answering with
UnifiedQA-v2 [16]. BLIP-VQA, proposed in [14] breaks
down a prompt into multiple questions, assigning a score
based on the probability of answering ‘yes’ to each ques-
tion, leveraging the vision-language understanding and gen-
eration capabilities of BLIP [19].

S.1.1.4. Implementation details
Our method is implemented in PyTorch [23], based on
Threestudio [11]. We employ Stable Diffusion 3 [9]. All
experiments are conducted on a single A100.

S.1.2. Experimental Results
Quantitative results Detailed quantitative results are
shown in Tab. S.1, Tab. S.2, Tab. S.3 and Tab. S.4. The
tables present quantiative results for each part editing.
Our approach outperformed all other baselines in NeRF
and Gaussian Splatting editing across all parts and met-
rics [3, 4, 8, 12, 17, 35]. Notably, considering that our
models achieve strong performance on both CLIP-based
and VQA-based scores, we can conclude that our models
perform well in editing at both coarse and fine levels. De-
tailed results of user study for each evaluation criterion are
provided in Table. S.5 and Table. S.6. Validity of the user



method
part

eye nose mouth hair hard avg

CLIP CLIPdir CLIP CLIPdir CLIP CLIPdir CLIP CLIPdir CLIP CLIPdir

GaussCtrl [35] 0.191 0.042 0.183 0.035 0.173 0.056 0.195 0.060 0.168 0.026 0.182 0.044

GaussianEditor [4] 0.190 0.068 0.130 0.057 0.140 0.086 0.232 0.144 0.202 0.083 0.179 0.087

DGE [3] 0.193 0.076 0.190 0.058 0.182 0.070 0.232 0.161 0.211 0.110 0.201 0.095

RoMaP(ours) 0.246 0.150 0.263 0.210 0.311 0.265 0.277 0.211 0.291 0.188 0.277 0.205

Table S.1. Comparison with GS editing methods. CLIP score and CLIP directional score value for each method and part.

method
part

eye nose mouth hair hard avg

B-VQA TIFA B-VQA TIFA B-VQA TIFA B-VQA TIFA B-VQA TIFA B-VQA TIFA

GaussCtrl [35] 0.194 0.422 0.195 0.561 0.223 0.389 0.239 0.494 0.098 0.292 0.190 0.432

GaussianEditor [4] 0.361 0.561 0.301 0.633 0.448 0.572 0.593 0.722 0.148 0.368 0.370 0.571

DGE [3] 0.517 0.539 0.427 0.717 0.512 0.5 0.774 0.683 0.255 0.388 0.497 0.565

RoMaP(ours) 0.700 0.667 0.797 0.733 0.935 0.711 0.796 0.717 0.399 0.543 0.723 0.674

Table S.2. Comparison with GS editing methods. BLIP-VQA score and TIFA score value for each method and part.

method
part

eye nose mouth hair hard avg

CLIP CLIPdir CLIP CLIPdir CLIP CLIPdir CLIP CLIPdir CLIP CLIPdir CLIP CLIPdir

iN2N [12] 0.247 0.067 0.257 0.071 0.258 0.084 0.253 0.079 0.227 0.060 0.248 0.072

VICA [8] 0.224 0.050 0.225 0.040 0.219 0.052 0.229 0.049 0.217 0.051 0.223 0.048

PDS [17] 0.162 -0.033 0.171 0.014 0.177 0.007 0.176 0.008 0.152 -0.020 0.167 -0.005

RoMaP(ours) 0.246 0.150 0.263 0.210 0.311 0.265 0.277 0.211 0.291 0.188 0.277 0.205

Table S.3. Comparison with NeRF editing methods. CLIP score and CLIP directional score value for each method and part.

method
part

eye nose mouth hair hard avg

B-VQA TIFA B-VQA TIFA B-VQA TIFA B-VQA TIFA B-VQA TIFA B-VQA TIFA

iN2N [12] 0.168 0.589 0.168 0.489 0.163 0.471 0.139 0.671 0.072 0.623 0.142 0.565

VICA [8] 0.277 0.436 0.204 0.507 0.292 0.387 0.228 0.396 0.205 0.41 0.241 0.427

PDS [17] 0.267 0.2 0.287 0.173 0.264 0.147 0.333 0.160 0.034 0.380 0.237 0.212

RoMaP(ours) 0.700 0.667 0.797 0.733 0.935 0.711 0.796 0.717 0.399 0.543 0.723 0.674

Table S.4. Comparison with GS editing methods. BLIP-VQA score and TIFA score value for each method and part.

study result is evaluated using pairwise Wilcoxon tests and
the Friedman test, as shown in Fig.S.3. The test results con-
firm that our method significantly outperforms other editing
and generation methods with strong statistical significance

and validating the effectiveness of our method.

Qualitative results We included more qualitative results
of our approach in Fig. S.1, Fig. S.2, Fig. S.8, Fig. S.9, and



Open-vocabulary 
Part segmentation Editing results

Scene-level 
reconstruction Editing results

Eyes

Body

Open-vocabulary 
Part segmentation

Beak

Pirate hat

Rubber duck

Silver
spoon

Cup

Ears

Sheep

Collar

Handle
“a white cup with pink handle” “a sheep with purple ears”

“a rubber duck with white hat” “a dog figurine with yellow eyes”

Figure S.1. 3DGS part editing results in complex 3DGS scenes. We performed RoMaP editing on complex 3DGS scenes from the LERF
dataset. As shown above, our RoMaP achieved precise open-vocabulary part segmentation for parts of varying sizes, such as the collar,
eyes, body, and rubber duck. Additionally, we achieved accurate part editing based on prompts like ‘a sheep with purple ears’ and ‘a rubber
duck with a white hat’.

“with blue hair” “with purple dress”

“with ‘Hi’ name tag” “with yellow collar”

Original complex 3D scene Editied complex 3D scene

Figure S.2. 3DGS part editing results in complex scenes. We demonstrate RoMaP editing results on complex 3D Gaussian Splatting
(3DGS) scenes from both the 3D-OVS and LERF datasets. As shown above, RoMaP achieves high-quality normal editing, effectively
handling diverse and practical edits such as ‘with blue hair’ or ‘with a ‘Hi’ name tag’. These results highlight RoMaP’s ability to generalize
across various scene complexities.

Fig. S.10. As shown in Fig. S.8, Fig. S.9 and Fig. S.10,
our RoMaP can generate diverse 3D assets by editing the
original 3D Gaussian Splatting (3DGS). Also, Fig. S.1 and
Fig. S.2 show part-editing of our RoMaP in complex scenes.
The results demonstrate that our 3D-GALP and editing

strategies achieve high precision in 3D segmentation and
enable precise modifications to the targeted regions, high-
lighting the scalability of our method to more complex and
cluttered 3D scenes.



Method Alignment Fidelity Accuracy

GaussCtrl [35] 19.70% 19.98% 20.6%
GaussianEditor [4] 19.61% 19.98% 20.72%
DGE [3] 23.18% 23.62% 20.24%
RoMaP (Ours) 36.73% 36.31% 38.43%

Table S.5. User study results on comparison with 3D Gaussian
editing models.

Method Alignment Fidelity

GSGEN [5] 20.48% 20.09%
GaussianDreamer [37] 19.61% 19.98%
RFDS [36] 23.18% 23.62%
RoMaP (Ours) 36.73% 36.31%

Table S.6. User study results on comparison with 3D Gaussian
generation models.

(a)Pairwise wilcoxon test with 
editing and generation methods

(b) Friedman test on
both results

DGE [3]

GC [35]
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Ours

GD [37]

GS [5]

RFDS [36]
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DGE GC GE Ours GD GS RFDS Ours

Editing methods Generation methods

Figure S.3. Statistical results from user study. (a) Pairwise
Wilcoxon test results for editing and generation methods. (b)
Friedman test p-values for fidelity, accuracy, and alignment. Our
approach (Ours) achieves significantly better performance in both
reconstruction and generation compared to existing methods.

Qualitative results of baselines We visualized qualita-
tive results of Gaussian and NeRF-editing baselines in
Fig. S.15 and Fig. S.16. For the NeRF baseline model, we
present result from IN2N [12]. Due to the implicit nature
of NeRF, precisely selecting the target region is challeng-
ing, often resulting in unintended global changes. For ex-
ample, when applying the prompt ‘Turn his hair into silver-
textured hair’, the entire scene shifts to a silver hue S.15.
Similarly, prompts such as ‘hair on fire’ or ‘left eye blue
and right eye green’ lead to incorrect region selection, caus-
ing widespread color alterations across the scene. For the
Gaussian Splatting baseline, we show results from Gaus-
sianEditor [4]. Inconsistencies in 2D part segmentation lead
to unreliable 3D part segmentation, as shown in Fig. S.16.
Additionally, 2D editing results demonstrate difficulties in
precisely modifying the desired regions. For instance, a
croissant appears in the background instead of the intended
edit, or the entire scene turns pink rather than just his eyes.

S.2. Additional results in complex scene

To further validate the robustness and generalizability of
RoMaP, we present additional editing results on complex
3DGS scenes from both the 3D-OVS [21] and LERF [15]
datasets. These scenes contain multiple objects with intri-
cate part-level structures and diverse contextual settings.

As illustrated in Fig. S.1, RoMaP demonstrates precise
open-vocabulary part segmentation and editing across a
wide range of object types and part granularity. Examples
include edits guided by prompts such as a ‘white cup with
pink handle’, ‘a rubber duck with white hat’, and ‘a dog fig-
urine with yellow eyes’. RoMaP effectively identifies and
modifies fine-grained parts such as handles, beaks, collars,
and ears, even under cluttered backgrounds and occlusions.

In addition, Fig. S.2 further showcases our model’s abil-
ity to perform practical part editing tasks involving real-
istic human and animal figures. Prompts such as ‘with
blue hair’, ‘with purple dress’, and ‘with ‘Hi’ name tag’ il-
lustrate RoMaP’s capability to generalize beyond common
categories and execute attribute-level modifications across
highly complex scenes. These results collectively highlight
RoMaP’s strength in both semantic understanding and fine-
grained spatial localization, making it a versatile tool for
open-vocabulary 3D scene editing.

S.3. Additional validation and details of
pipeline

S.3.1. Attention map extraction

Unlike the naive reverse flow-matching process used in text-
to-3D generation, we adopted a controlled forward ODE
to extract more accurate attention maps for real images,
thereby enhancing robustness. Controlled forward ODE,
proposed in [27], helps maintain consistency with the given
image while aligning with the distribution of typical im-
ages. This balancing mechanism allows for effective inver-
sion and editing across various inputs, especially real im-
ages, even when the given image is corrupted or atypical.
Additionally, we adopted the approach proposed in [34] for
dense prediction. This method allows for faster and more
accurate extraction of attention maps.

Post-processing We post-processed extracted attention
maps by normalizing them with a softmax temperature and
utilizing a refiner [6]. Adjusting softmax temperature al-
lowed us to segment regions with varying granularity, while
the refiner, by incorporating the original image features, en-
abled segmentation of parts with more precise edges, as
shown in Fig. S.4.



Input Image w.o / refinerw.o / softmax normalization Full

Segment Prompt : “A photo of joker with mouth and hair and face and clothes”

Figure S.4. Ablation study of attention map post-processing procedure By adjusting the softmax temperature, we achieved segmentation
with varying levels of granularity, while the refiner, leveraging the original image features, facilitated the segmentation of parts with sharper
and more defined edges.

S.3.2. 3D-geometry aware label prediction
S.3.2.1. Details of 3D-geometry aware label prediction
The detailed algorithm for 3D-Geometry Aware Label Pre-
diction (3D-GALP) is provided in Algo. 1. 3D-GALP pro-
duces high-quality 3D segmentation maps even when part
segmentation maps from multiple views are noisy, by ap-
plying a neighbor consistency loss that considers the soft-
label property of Gaussian segmentation. Label softness
is typically higher at part boundaries due to abrupt shape
changes, which can lead to substantial variation in segmen-
tation results across different views. Moreover, in prac-
tice, the Gaussians at these part boundaries may simultane-
ously represent pixels belonging to multiple parts depend-
ing on the viewpoint, further complicating consistent seg-
mentation. To address this, Gaussians with both high and
low softness are sampled, enabling continuous refinement
of ambiguous as well as more view-invariant regions while
taking surrounding information into account.

S.3.2.2. Part segmentation performance of 3D-GALP
compared with other language-embedded
3DGS model in complex scenes

Experimental setting To evaluate how effectively 3D-
GALP performs part segmentation in complex scenes, we
annotated part segmentation for every object in all scenes
of the 3D-OVS dataset [21]. We compared 3D-GALP with
two text-aligned segmentation models for 3D Gaussians,
LangSplat [25] and LeGaussian [28]. We kept hyperpa-
rameter, the softmax value for our 2D attention map ex-
traction, to 0.2 during segmentation. We then evaluated
part-segmentation results for each object from three differ-
ent views, comparing them against ground truth using the
mean Intersection over Union (mIoU). Examples of part-
segmentation annotation are presented in Fig. S.5.

Experimental results As shown in Tab. S.7, our 3D seg-
mentation method, 3D-GALP, achieves the highest mIoU,

Original Annotated part Original Annotated part

“body, hair, face of a barbie” “wheels, body of a car”

“shirts, head, body of a pooh” “face, body, ears of a rabbit”

Figure S.5. Examples of part segmentation annotation in 3D-
OVS dataset.

outperforming other 3DGS segmentation baselines across
all scenes. Furthermore, 3D-GALP successfully performs
open-vocabulary 3DGS segmentation for parts of varying
sizes in complex scenes, as illustrated in Fig. S.11.

Scene Bench Blue sofa Cov.desk Room Average
LangSplat [25] 0.005 0.076 0.093 0.129 0.076
LeGaussian [28] 0.320 0.312 0.264 0.257 0.288
3D-GALP (Ours) 0.607 0.580 0.546 0.502 0.559

Table S.7. Comparison of 3D-GALP with part segmentation
on complicated 3D scenes.

S.3.2.3. Ablation study on SH degree
Experimental setting We ablated the SH order to analyze
its effect on part-level segmentation. While low-order SH is
typically sufficient for modeling lighting in color represen-
tation, part-level segmentation requires sharper spatial tran-
sitions, particularly around object boundaries. To evaluate
this, we conducted experiments using the same experimen-
tal settings as in S.3.2.2 with different SH degree settings.

Experimental results As shown in Tab. S.8 and Fig. S.6,
SH=3 consistently provides the best average mIoU across



SH = 1 SH = 2 SH = 3 SH = 4

Figure S.6. Part-level segmentation visusalizations with differ-
ent SH orders.

scenes and captures fine-grained parts more clearly than
lower orders. Although SH=4 performs best in some scenes,
it introduces more noise and higher memory usage, leading
to slightly worse overall performance. Based on these ob-
servations, we fix SH=3 for all segmentation experiments,
as it provides the best trade-off between detail preservation
and stability.

Order of SH 1 2 3 4

mIoU 0.4777 0.5306 0.5587 0.5506

Table S.8. mIoU average scores across the scenes per SH de-
gree. Best per scene is in bold.

S.3.3. Scheduled latent mixing and part editing
S.3.3.1. Scheduled latent mixing and part editing
The detailed algorithm is provided in Algo. 2. This method
leverages the property of rectified flow that is more faith-
ful to the original image. During the editing process, αbase
is multiplied by the mask to ensure that regions outside the
target editing area retain their original information. This in-
troduces weak conditioning at intermediate steps of image
generation, guiding the generated regions to align with the
original context. At the timestep ts, αlast is applied to en-
sure that most of theMinv regions are replaced with ztarget,
preserving the majority of the reference image’s informa-
tion in the final output. Further results on the selection
of ts are shown in Fig. S.14. A low ts induces dramatic
changes based on the prompt, while a high ts ensures faith-
ful adherence to the mask, taking into account the origi-
nal content and its context. In the ts selection described
in the main paper, we randomly selected 100 person images
from the CelebAMaskHQ [18] dataset, performed part-level
editing using 25 prompts, and evaluated the results using
CLIPdir [10] and SSIM to assess the direction of change
while preserving the original content. The full experimen-
tal results with 25 prompts are shown in Fig. S.7.

S.3.3.2. Comparison of SLaMP with other image editing
models

Experimental setting To evaluate the effectiveness of
our SLaMP in preserving non-target regions while accu-
rately modifying only the specified parts compared to other

Sweet spot

Figure S.7. Statistical result for finding sweet spot using CLIP
and SSIM results.

models, we randomly selected 15 male and female im-
ages from the CelebAMaskHQ [18] dataset. For each im-
age, we performed image editing using 25 prompts as de-
scribed in Sec. S.1.1.1. For comparison, we selected SD3-
based models (SD3-inpainting [36], Plug&Play [9], RF-
inversion [27]), as well as an editing model based on naive
latent mixing (RePaint [22]), in contrast to our scheduled
latent mixing approach. Additionally, we include a training-
based model, InstructPix2Pix (IP2P [2]), which is com-
monly adopted in 3DGS and NeRF editing approaches. For
RePaint, we used a Stable Diffusion-integrated variant from
HuggingFace Diffusers [32] library since RePaint is not
originally designed for text-based image editing. We eval-
uated how well the changes aligned with the prompts using
the CLIPdir [10] and B-VQA [14] metrics.

Metrics RePaint iP2P SD3-inp. Plug&Play RF-inv. SLaMP
[22] [2] [9] [36] [27] (Ours)

CLIPdir ↑ 0.111 0.117 0.147 0.044 0.089 0.165
B-VQA ↑ 0.439 0.668 0.693 0.564 0.740 0.758

Table S.9. Quantitative comparison of SLaMP with other 2D
part editing baselines.

Experimental results The quantitative experimental re-
sults are presented in Tab. S.9, and the qualitative results
in Fig. S.12. SLaMP outperforms all other 2D image edit-
ing baselines across all metrics, including CLIPdir [10] and
BLIP-VQA [14]. Unlike baselines that either fail to reflect
the prompt or fail to preserve the original context, SLaMP
produces significant changes in the target part while accu-
rately maintaining the untouched regions, achieving strong
alignment with the text prompt.

As shown in Fig. S.12, the widely used 2D image edit-
ing baseline for 3D editing research, iP2P [2], struggles to
perform meaningful part edits and often deviates from the
original image context. This helps explain why existing
3D editing models often produce no visible changes in part
editing tasks. RePaint [22] employs a fixed blending ratio
for harmonized inpainting, making it unsuitable for strong,
prompt-driven part-level edits. In contrast, SLaMP adopts



a scheduled blending strategy that enables bold edits early
on and gradually preserves global context, achieving both
precise modifications and faithful preservation. Additional
results of SLaMP editing can be found in Fig. S.13.

S.4. Social Impact and Limitations
In our methodology, we utilized existing datasets from prior
works [2, 33]. These datasets include information about
real individuals, and if the results of our editing approach
are misused, it could lead to concerns regarding negative
societal impacts. Therefore, we strongly advocate for the
responsible use of our methodology in adherence to ethical
guidelines and relevant laws. In perspective on limitation,
our approach relies on 3D segmentation based on attention
maps observed from 360-degree viewpoints. Consequently,
it may not perform well when dealing with objects with
highly complex geometries (e.g., a Klein bottle), leading
to unintended editing results. Additionally, if the Gaussian
Splatting scene is inherently blurry or poorly reconstructed,
it becomes difficult to distinguish individual components.
This can cause SD3 to fail in accurately interpreting the
scene, resulting in incorrect 3D segmentation or undesired
editing outcomes.



Algorithm 1: Algorithm of 3D-geometry aware
label prediction (3D-GALP).

Input: Gaussian Representation Ω, Camera
Parameters C, Number of Anchors K,
Nearest Neighbors k, Segmentation Labels
slabels

Output: Segmentation Loss L3D
// Initialize multi-view camera

dataset
1 Dtest ← LoadMultiviewDataset(C)
// Compute SH consistency

2 S← Ω.get sh objects()
3 T← ∅ // Store SH values for

different views
4 foreach b in Dtest do
5 d← ComputeViewDirection(b, C)
6 sb ← EvalSH(Ω,S,d)
7 T← T ∪ sb

// Compute variance and entropy for
each Gaussian

8 foreach Gaussian i in Ω do
9 Compute variance: vi ← 1

|T|
∑

r∈T ∥r− r̄∥2,
where r̄ = 1

|T|
∑

r∈T r

10 Compute entropy: sim← r̄·Rlabels
∥r̄∥∥Rlabels∥

11 pi ← esim∑
esim

12 Hi ← −
∑

pi log(pi + ϵ) // Compute
entropy

13 Compute label softness: Ui ← Hi · vi

// Anchor Selection Based on label
softness

14 Sort all Gaussians by Ui in descending order
15 Select ⌊K/2⌋ anchors with highest Ui

16 Select ⌊K/2⌋ anchors with lowest Ui

17 Define set of selected anchors: S
// Compute Anchor-Based Neighbor

Consistency Loss
18 foreach anchor i ∈ S do
19 Find nearest neighbors Nk(i) = {j1, . . . , jk}

using Euclidean distance
20 Compute L1 loss:

L3D ←
∑

i∈S

[
1
k

∑
j∈Nk(i)

∥ri − rj∥1
]

21 return L3D

Algorithm 2: Scheduled latent mixing and part
editing Algorithm

Input: Latents z, Text Embeddings E, Camera
Condition C, Timestep T, Noise ntarget, Cfg
scale c, γ, ηvalues, αbase, αlast, MaskM, ,
Mix timestep ts

Output: Model Prediction mpred
// Latent Initialization and Noise

Target
1 for tcurr, tprev in timesteps[: −1], timesteps[1 :] do
2 t← tcurr × 1000
3 vpred ← transformer(znoisy, t,Euncond)
4 vtarget ← (ntarget − znoisy)/(1− tcurr)
5 vinterp ← γ · vtarget + (1− γ) · vpred
6 znoisy ← znoisy + (tprev − tcurr) · vinterp

7 ztarget ← z.clone
8 for t in timesteps do
9 t← t/1000

10 vpred ← transformer(znoisy, t,Emix)
11 vtarget ← −(ztarget − znoisy)/t
12 η ← ηvalues[i]
13 vinterp ← vpred + η · (vtarget − vpred)
14 znoisy ← scheduler.step(vinterp, t, znoisy)
15 F ← αlast if i > |timesteps| − ts else αbase

16 Minv ← F × (1−M)
znoisy ← znoisy × (1−Minv) + ztarget ×Minv

17 mpred ← znoisy
18 return mpred
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with face of a clown with face of an alien with face of a batman

A bird with dragon’s wings with mechanical wings
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Figure S.8. Additional qualitative results of RoMaP. Our approach, RoMaP, enables editing across a wide range of parts, objects, and
prompts in generated 3D Gaussians, further providing users with enhanced controllability over 3D content generation.
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(b) Additional qualitative comparison with 3DGS generation models

(a) Additional results for enhanced controllability in 3D asset generation

”A woman with golden bell nose”

“~ with slight 
smile”

“~ with cloudy hair” 

“~ with blue fire hair” “~ with gold bell nose＂

“~ with tomato nose” 

“~ with duck’s beak” 

Original 3D asset

Figure S.9. Additional qualitative results of RoMaP. Our approach, RoMaP, enables editing across a wide range of parts, objects, and
prompts in generated 3D Gaussians, further providing users with enhanced controllability over 3D content generation.



”A man with flowered lips”

Original RoMaP(Ours)GaussCtrl GaussianEditor DGE

”A man with green lips”

”A man with delicious blueberry nose”

GaussCtrl [35] GaussianEditor [4] DGE [3]

Figure S.10. Additional comparison results of RoMaP. Our approach, RoMaP, enables editing across a wide range of parts, objects,
compare to other methods in 3D scene reconstruction settings.



“Body, head of a shampoo”

Original Annotated part Part-segmentation result of LangSplat [25]

Part-segmentation result of LeGaussian [28]

“Petals, center of a flower”

Original Annotated part Part-segmentation result of LangSplat [25]

Part-segmentation result of LeGaussian [28]

“Body, display of a remote controller”

Original Annotated part Part-segmentation result of LangSplat [25]

Part-segmentation result of LeGaussian [28]

“Body, head of a chicken”

Original Annotated part Part-segmentation result of LangSplat [25]

Part-segmentation result of LeGaussian [28]

Part-segmentation result of 3D-GALP (Ours)

Part-segmentation result of 3D-GALP (Ours)

Part-segmentation result of 3D-GALP (Ours)

Part-segmentation result of 3D-GALP (Ours)

Figure S.11. Open-voca part segmentation results comparison in complicated 3DGS scenes of 3D-OVS dataset.



IP2P SD3-inpaintingPlug & PlayOriginal

Prompt : A man with diamond lips

Prompt : A man with gold-textured nose

Prompt : A man with green lips

Prompt : A woman with pink-colored eyes

Prompt : A woman with left blue, right green eyes

Prompt : A woman with croissant nose

SLaMP (ours)Original IP2P [2] Plug & Play [36] SD3-inpainting [9] SLaMP (Ours)

Figure S.12. Local editing results between SLaMP and 2D image editing methods. SLaMP editing employs rectified flow inversion to
achieve effective modifications while maintaining the original context in unedited regions. This contrasts with 2D image editing baselines,
which struggle to edit the specified part in alignment with the text prompt.



Original SLaMP edited images

Figure S.13. More 2D part editing results with SLaMP.



Prompt : A man with diamond nose

Prompt : A man with delicious croissant nose

Original 𝑡! = 0 𝑡! = 1 𝑡! = 3 𝑡! = 5 𝑡! = 7

𝑡! = 9 𝑡! = 11 𝑡! = 13 𝑡! = 15 𝑡! = 17 𝑡! = 19

Original 𝑡! = 0 𝑡! = 1 𝑡! = 3 𝑡! = 5 𝑡! = 7

𝑡! = 9 𝑡! = 11 𝑡! = 13 𝑡! = 15 𝑡! = 17 𝑡! = 19

Figure S.14. Effect of different ts in SLaMP editing.



Timestep 1000 Timestep 2000 Timestep 3500Original

Prompt : “Turn his hair into hair on fire, red and blue flames”

Prompt : “Turn his hair into silver-textured hair”

Prompt : “Turn his left eye blue and right eye green”

Figure S.15. Qualitative results of nerf baseines [12] in 3D part editing.



Final edited 3D resultOriginal

1) Prompt : “Turn his nose into a delicious croissant”

Part segmentation (“nose”) results

2D multi view edit results

Final edited 3D resultOriginal

2) Prompt : “Turn his eyes pink”

Part segmentation (“eyes”) results

2D multi view edit results

Figure S.16. Qualitative results of 3DGS baseine [4] in 3D part editing.
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