
-Supplementary Material-

Robust Dataset Condensation using Supervised Contrastive Learning

A. Formation and Evaluation of the Golden Set

Figure 4 presents a graph depicting the training process
of RDC within IDM when condensing 10 images per class
from the CIFAR-10 dataset with 40% asymmetric noise,
40% symmetric noise, and 40% real-world noise (CIFAR-
10N-worse dataset), using a ResNet18 backbone model.
The figure tracks the progress of the metrics related to the
formation of the golden set from the end of the warm-up
phase at epoch 5 to the final training epoch at epoch 150.

To provide a detailed analysis, the following describes
the key metrics observed in the 40% asymmetric noise
dataset, located at the top line.

The first graph displays the precision and recall values
of the clean set C. The precision increases and eventually
stabilizes around 0.82, while the recall continuously rises
and converges near 0.9. This trend suggests that the clean
set extraction process via Gaussian Mixture Model (GMM)
effectively identifies clean images, contributing to the for-
mation of a well-curated golden set.

The second graph illustrates the size dynamics of the
clean set C and the unclean set U classified by GMM.
The clean set steadily increases and stabilizes at approxi-
mately 32,000 samples, whereas the unclean set gradually
decreases and converges around 18,000 samples. This ob-
servation indicates that a sufficient number of clean images
are successfully extracted throughout the training process.

The third graph presents the number of images in the un-
clean set U that undergo relabeling due to their confidence
exceeding the threshold c (0.95), along with the accuracy
of the relabeled set R. The relabeling accuracy stabilizes
around 0.82, while the number of relabeled images progres-
sively increases as training advances, ultimately reaching
approximately 12,000 samples.

The fourth graph depicts the evolution of the golden set
G’s size and the leftovers, which is the unlabeled set U \ R.
The golden set consistently expands, eventually reaching
around 43,000 samples, while the unlabeled set declines and
stabilizes at approximately 7,000 samples.

The middle and bottom rows of the figure which corre-
spond to the 40% symmetric noise dataset and the CIFAR-
10N-worse dataset, follow a structure similar to top row,
providing a comparative analysis of how the golden set
evolves under different types of noise. These findings col-
lectively demonstrate that the golden set achieves a suffi-
cient size while effectively filtering out noisy samples, high-
lighting the efficacy of the proposed noise-filtering and sam-
ple selection strategy.

B. Implementation Details
B.1. RDC Settings
B.1.1. Detailed Explanation of DivideMix Loss Utilized

in RDC
The DivideMix [20] loss function consists of three main

components: Lx, Lu, and Lreg, each contributing to training
stability and robustness in the presence of noisy labels.

Lx represents the MixUp loss, which is computed us-
ing both labeled and unlabeled data with predicted pseudo-
labels due to the MixUp-based cross-entropy loss formula-
tion. Pseudo-labels are generated by applying a sharpening
function to the model’s predicted logits. Since MixUp is ap-
plied to both clean and noisy samples, the model learns from
interpolated inputs and labels, effectively leveraging infor-
mation from both sets. This enhances generalization and ro-
bustness by encouraging the model to learn smoother deci-
sion boundaries and mitigating the impact of label noise.

Lu is the unsupervised consistency loss, which enforces
consistency between the model’s predictions on an image
and its augmented counterpart. The model first generates
pseudo-labels from its predicted logits, and the same pro-
cess is applied to the augmented version of the image. The
consistency loss is then computed as the squared difference
between the pseudo-labels of the original and augmented
images. This encourages the model to make stable predic-
tions under different augmentations, thereby improving its
resistance to label noise. The weight of this loss term is con-
trolled by a hyperparameter �u.

Lreg is a regularization term that prevents the model from
becoming overconfident in its predictions. It is based on
KL divergence between the average model prediction and
a uniform prior distribution over all classes. By aligning the
model’s output distribution with this prior, the regulariza-
tion term discourages the model from making overly confi-
dent predictions on uncertain samples. The contribution of
this term to overall loss is controlled by a scaling factor �r.

By combining these three components, the DivideMix
loss effectively balances supervised learning on clean sam-
ples, consistency regularization for noisy data, and prior-
based regularization to enhance robustness. The overall loss
function is formulated as:

LDivideMix = Lx + �uLu + �rLreg (18)

B.1.2. Parameter Search for� in Golden MixUp Contrast
We conducted a grid search to determine the optimal

MixUp parameter for use in golden MixUp contrast. As
shown in Table 7, we performed experiments on the CIFAR-



Figure 4. Progression of metrics related to the formation of the golden set when condensing the noisy CIFAR-10 dataset (40% asymmetric
noise, 40% symmetric noise, CIFAR-10N-worse) with IPC 10 using ResNet18, employing RDC and IDM.

� Accuracy

0.25 54.17
0.50 55.13
0.75 55.55

Table 7. Grid search for the MixUp parameter � in Golden MixUp
Contrast on noisy CIFAR-10 (40% asymmetric noise, IPC 50) us-
ing ResNet18.

10 dataset with 40% asymmetric noise in an IPC 50 setting,
evaluating � values of 0.25, 0.5, and 0.75. The experimental
results showed that when � = 0.75, the classification accu-
racy of the synthetic set reached 55.55%, the highest among
all tested values. Based on this finding, we set � = 0.75 for
all subsequent experiments.

B.1.3. Parameters for RDC
In all experiments, the MixUp parameter � was set to

0.75, determined through a parameter search to optimize
performance. The loss function incorporated a temperature
scaling factor ⌧ of 0.07, which is used in golden MixUp
contrast. During training, a confidence threshold c (0.95)
was used to filter high-confidence predictions. The model
temperature value used for predicting pseudo-labels from
the unlabeled set was applied with the value of 0.5, same as
the value used in DivideMix. The value of �u, which con-
trols the contribution of the unsupervised loss, was set to 0

for CIFAR-10, CIFAR-10N rand1, and datasets with 20%
and 40% asymmetric noise, as well as those with 20% sym-
metric noise. For CIFAR-10 datasets with higher noise lev-
els, including 40% symmetric noise and CIFAR-10N worse,
�u was set to 25. For CIFAR-100, �u was set to 0 for the
standard dataset. For datasets with 20% and 40% asymmet-
ric noise, as well as 20% symmetric noise, �u was set to 25.
For datasets with 40% symmetric noise and CIFAR-100N-
noisy, �u was further increased to 125 to enforce stronger
regularization.

B.2. Dataset Cleaning via DivideMix
We proposed a two-stage approach as the baseline for

RDC, where dataset cleaning was first performed using Di-
videMix, followed by the application of a dataset conden-
sation method. Two models used for DivideMix were both
ResNet18, with a learning rate of 0.02. For pseudo-label
prediction in the unlabeled set, sharpening was applied with
a temperature value of 0.5. The models were trained for a
total of 300 epochs. For the unsupervised loss �u, same val-
ues were used as Section B.1.3.

B.3. Applying RDC on IDM
This section provides the implementation details for re-

producing IDM [56], as well as the details of applying RDC
to IDM.



B.3.1. IDM reproduction
We performed the reproduction of IDM following its

original settings, not only on clean CIFAR-10 and CIFAR-
100 datasets but also on datasets containing asymmetric,
symmetric, and real-world noise. Additionally, we utilized
datasets refined through DivideMix.

Evaluation Setup. The model used for both training and
evaluation was ResNet18. Evaluation accuracy was mea-
sured as the average of 10 independent evaluations. Each
evaluation involved training a newly initialized ResNet18
model from scratch using the synthetic set and then as-
sessing its performance on the test sets of CIFAR-10 and
CIFAR-100. Each evaluation consisted of 1,000 training
steps.

Model Update Strategy. During training, we initialized
the process with four models. Every 30 iterations, one ad-
ditional model was introduced, and once the total number
of models reached 100, the oldest models were discarded to
maintain a fixed number. At each iteration, two randomly
selected models were trained for a total of 10 updates. The
batch size for training was set to 256. The ResNet18 model
used for training original dataset was trained with learning
rate 0.01 using the SGD optimizer with momentum set to
0.9 and weight decay set to 0.0005. The entire training pro-
cess lasted for 20,000 iterations.

Synthetic Set Update Strategy. During condensation,
the synthetic set was updated based on not only the distribu-
tion loss, but also the accuracy-weighted cross-entropy loss
(Acc�LCE(S)). Specifically, when the number of images
per class (IPC) was 50, a scaling factor of 0.1 was applied
to the accuracy-weighted cross-entropy loss, while for IPC
1 and 10, the scaling factor was set to 0.5. For synthetic set
optimization, we used the SGD optimizer with learning rate
0.2 and momentum value 0.5.

Data Augmentation Strategy. To enhance training diver-
sity, various augmentation strategies were applied. Color
transformations included random adjustments to brightness,
saturation, and contrast. Spatial transformations involved
random cropping, flipping, scaling, and rotation to intro-
duce variability in image geometry. Additionally, struc-
tural modifications were implemented using random cutout,
which occludes parts of the image to encourage the model
to focus on more generalizable features.

B.3.2. Applying RDC to IDM
To apply RDC to IDM, we trained a single model us-

ing semi-supervised learning to properly learn clean rep-
resentations from the original dataset, rather than training

100 models for short periods and frequently replacing them.
Therefore, we set up a single model from the beginning
and trained it throughout the entire process. Also, to apply
GMM based on the loss values of every images per epoch,
we converted the update count from iterations to epochs and
trained RDC for a total of 150 epochs. Some model param-
eter settings were adjusted based on the parameters used in
DivideMix. Specifically, the learning rate was set to 0.02,
and the learning rate was reduced by a factor of 0.1 at every
50 epochs.

Additionally, IDM is a type of distribution matching
technique that aligns the mean embeddings of the origi-
nal set and the synthetic set for each class. However, if the
original dataset contains noise, the mean embeddings of the
original set may also be corrupted. To address this, we per-
formed distribution matching using the mean embeddings
of the golden set G, which were extracted as described in
Section 4.1.1.

B.4. Applying RDC on Acc-DD
This section presents the implementation details for re-

producing Acc-DD [52], along with the specifics of apply-
ing RDC to Acc-DD.

B.4.1. Acc-DD reproduction
Pretraing Models. For pretraining in Acc-DD, we used
the CIFAR-10 dataset along with datasets containing asym-
metric, symmetric, and real-world noise. Additionally, we
incorporated datasets that were cleaned using DivideMix to
improve data quality. The model used for pretraining was
ResNet18, and the number of pretraining epochs was set
to 2. The augmentation strategy applied during pretraining
included a combination of color transformation, cropping,
cutout, flipping, scaling, and rotation.

Evaluation Setup. The evaluation was conducted using
ResNet18 for both training and testing. Accuracy was av-
eraged over 5 independent runs, where each run involved
training a newly initialized ResNet18 from scratch on the
synthetic CIFAR-10 dataset. The trained model was then
evaluated on the CIFAR-10 test set. Each evaluation con-
sisted of 1,000 training steps.

Model Update Strategy. The model was trained using
stochastic gradient descent (SGD) with a learning rate
of 0.01, momentum of 0.9, and weight decay of 0.0005.
The learning rate for the model remained fixed throughout
training. The condensation process ran for 500 iterations,
with each iteration containing 100 inner-loop updates. Each
batch of real images contained 64 samples. The dataset was
iteratively refined over 2000 real samples per iteration, with
one training epoch per network update. To ensure repro-
ducibility, the entire process was repeated five times.



Algorithm 1: Robust Dataset Condensation (RDC)
Input: T : original noisy dataset. f✓: base model

trained on T . Twarmup: model warm-up epoch.
Initialize: Train base model f✓ on T for Twarmup.
for iteration Twarmup to max iteration do

Update ✓RDC by Eq. (16)
Define the golden set G by Eq. (10)
Make MixUp augmented synthetic set SMixUp

using S and G by Eq. (11)
Calculate LGMC using SMixUp by Eq. (14)
Update S by Eq. (17)

Output: Robust synthetic dataset SRDC

Synthetic Set Update Strategy. The synthetic dataset
was optimized separately with a learning rate of 0.01 and a
momentum of 0.5 to allow for gradual refinement. A multi-
scale condensation strategy was applied, where the factor
parameter was set to 2, meaning that images were divided
into smaller patches and reconstructed to retain different
levels of detail. The synthetic batch size was set to a max-
imum of 128. Additionally, the synthetic dataset was re-
fined through a gradient-based matching strategy, ensuring
that the gradients of synthetic and real images were aligned.
Mean squared error (MSE) was used as the loss metric for
this matching process.

Data Augmentation Strategy. Differentiable data aug-
mentation was applied using color transformation, crop-
ping, cutout, flipping, scaling, and rotation to improve gen-
eralization.

B.4.2. Applying RDC to Acc-DD

Since Acc-DD matches the gradient values of a model
trained on the original dataset in the early epochs with the
gradient of a model trained on the synthetic set, training
a single model for an extended period results in diminish-
ing gradient magnitudes in later stages, making effective
condensation infeasible. To address this, instead of training
a single model throughout the entire process, we applied
RDC for a limited number of initial epochs and immedi-
ately retrained a new model to maintain effective gradient
matching. Given that the pretraining phase consisted of 2
epochs, we trained the model on the original dataset for 3
epochs during the condensation process and applied RDC
for 2 epochs. This process was repeated every 5 epochs.

C. Algorithm of Robust Dataset Condensation

Algorithm 1 describes the full pipeline of Robust Dataset
Condensation (RDC).

Method IDM IDM + RDC

CIFAR-10 \Metrics HLR IOR LRS HLR IOR LRS

Clean 50.27 22.82 -0.1565 48.09 25.00 –0.1565
Asymm. 40% 28.2 11.08 –0.1564 17.46 21.82 3.607
Symm. 40% 23.62 22.81 0.1272 18.56 22.81 3.407
Real. 40% 29.00 18.17 –0.1547 20.84 26.33 6.464

Table 8. Evaluation of RDC using the HLR, IOR, and LRS met-
rics from the Dd-Ranking benchmark on CIFAR-10 under various
noise types.

D. Evaluation with Dd-Ranking Benchmark
Table 8 presents the evaluation of RDC using three met-

rics from the Dd-Ranking benchmark [22]: hard label re-
covery (HLR), improvement over random (IOR), and label-
robust score (LRS). Applying RDC consistently outper-
forms the baseline across all noise settings, demonstrating
its robustness and effectiveness. Lower HLR, higher IOR,
and higher LRS indicate better performance. For LRS, the
weighting parameter ª is set to 0.5.

E. RDC with Soft Labels
Let the number of classes be c, and the dataset be de-

fined as T =
�
(x1, y1), . . . , (x|T |, y|T |)

 
, where each la-

bel yi 2 Rc is a soft label represented as a probability vector
yi = [y(1)i , y(2)i , . . . , y(c)i ] where

Pc
j=1 y

(j)
i = 1. Here, y(c)i

denotes the probability that sample xi belongs to class c.
Since every sample contains probability values over all

classes, explicitly defining positive and negative pairs is
not meaningful. Instead, we compute similarity between the
anchor and all other samples, and weight the contribution
based on the product of the class probabilities from the soft
labels.

Let the set of all samples excluding the anchor (xi, yi)
be: A = {(xa, ya) 2 T | xa 6= xi} . Then, the supervised
contrastive loss with soft labels is defined as:

LSupCon(T , A) =
X

xi2T

CX

c=1

 
� y(c)

i

X

xa2A

y(c)
a

· log exp (f✓(xi) · f✓(xa)/⌧)P
xa2A exp (f✓(xi) · f✓(xa)/⌧)

! (19)

This formulation removes the need to explicitly define
positive sets. Instead, similarity is computed for all samples
in the denominator, weighted by the soft label probabilities.
As all samples are used in the denominator, normalization
by the size of the positive set (e.g., dividing by |P |) is con-
sidered unnecessary and therefore omitted.

F. Applying RDC to MTT and DATM
In Table 9, we evaluate applying RDC to MTT [2] and

DATM [11], two representative trajectory matching-based
condensation methods. We synthesize 10 images per class
on noisy CIFAR-10 using ResNet18. Both MTT and DATM



CIFAR-10 (10 Img/Cls) Clean Asymm. 40% Symm. 40% Real. 40%

Random 22.28 19.53 18.36 20.19

MTT 38.26 27.42 35.11 36.39
MTT + Two-stage 37.40 32.36 36.53 36.71

MTT + RDC (Ours) 38.83 33.61 40.02 40.11

DATM 42.74 24.24 23.75 25.66
DATM + Two-stage 40.60 22.08 38.86 35.64

DATM + RDC (Ours) 41.59 34.54 41.21 39.07

Whole Dataset 95.37 58.81 64.79 67.36

Table 9. Robustness comparison among different methods using
MTT and DATM as the base model on CIFAR-10 under various
noise types.

are highly sensitive to label noise, and although the two-
stage approach provides some performance recovery, it re-
mains insufficient across all noise settings.

In contrast, integrating RDC into both MTT and DATM
leads to substantial performance recovery. In the symmetric
and real noise settings, the performance closely approaches
that of the clean-data baseline. In the asymmetric noise set-
ting, RDC yields significant improvements over the original
methods. These results demonstrate the adaptability of RDC
to trajectory matching methods. In particular, they highlight
its effectiveness even when applied to soft-label methods
such as DATM.

G. Latency of RDC over Two-Stage Approach
To demonstrate the resource efficiency of the two-stage

approach, we compared the time consumption of RDC with
a two-stage approach that performs data cleaning prior to
applying the base method. This experiment was conducted
using a single A5000 GPU, with IDM employed as the base
condensation method. The dataset used was CIFAR10N-
worse, which contains approximately 40% real noise, and
condensation was performed with 10 images per class. Di-
videMix was utilized as the data cleaning method.

The two-stage approach required 18.83 hours in total,
with the data cleaning process taking 6.78 hours and the
condensation process taking 12.05 hours. In contrast, RDC
completed the entire process in 14.03 hours, demonstrating
a time efficiency improvement of approximately 5 hours.
This result highlights not only the time efficiency of RDC
but also its effectiveness in achieving performance compa-
rable to or even superior to that of condensation conducted
on a fully clean dataset, thereby validating its efficiency and
practicality.

H. Visualization of RDC
We can verify the effectiveness of RDC through its vi-

sualization. The following figures present the overall re-
sults in four scenarios: (Fig 5) condensing clean CIFAR-
10 using Acc-DD, (Fig 6) applying Acc-DD on CIFAR-10
with 40% asymmetric noise, (Fig 7) using the two-stage
approach of DivideMix for data cleaning followed by con-

densing CIFAR-10 with 40% asymmetric noise using Acc-
DD, and (Fig 8) applying RDC to Acc-DD on CIFAR-10
with 40% asymmetric noise. In all scenarios, 10 images per
class were condensed. A detailed explanation can be found
in Section 5.5 in the main paper.



Figure 5. Visualization of Condensed Images of CIFAR-10, IPC 10 using Acc-DD

Figure 6. Visualization of Condensed Images of CIFAR-10 with 40% asymmetric noise, IPC 10 using Acc-DD



Figure 7. Visualization of Condensed Images of CIFAR-10 with 40% asymmetric noise, IPC 10 using data cleaning and Acc-DD

Figure 8. Visualization of Condensed Images of CIFAR-10 with 40% asymmetric noise, IPC 10 using RDC and Acc-DD


