
SynAD: Enhancing Real-World End-to-End Autonomous Driving Models
through Synthetic Data Integration

Supplementary Material

A. Ego-centric Scenario Generation
A.1. Diffusion Training.
For the backbone model, we leverage a U-Net backbone
with custom temporal adaptations for handling sequential
features and multi-agent scenarios. In the reverse process,
the condition f is constructed by concatenating the map fea-
tures from the past h = 1 timestamp. These map features
are encoded using a ResNet model. We train the diffusion
model on the nuScenes training set for 200 epochs using
the Adam optimizer with a learning rate of 2 × 10−4 and
employ cosine learning rate decay.

A.2. Guide Functions
Agent Collision. To prevent agents from colliding with
each other, we introduce an agent collision guide func-
tion that penalizes trajectories where agents come too close.
Each agent i is approximated as a circle centered at its pre-
dicted position, with a radius ri defined as half the diago-
nal length. To maintain a safe separation between agents,
we define a safety distance as the sum of their radius and a
buffer distance δ:

dsafe,ij = ri + rj + δ, where δ = 1. (A)

For each pair of agents i and j, we denote the Euclidean
distance between the two agents as dtij . Then, we define the
agent collision guide for agent i at timestamp t as:

Rt
agent,i =

∑
j ̸=i

max

(
1−

dtij
dsafe,ij

, 0

)
(B)

To emphasize avoiding collisions earlier in the trajectory,
we apply an exponential decay weighting to the collision
penalties computed across all timestamps T :

Ragent,i =

T∑
t=1

w(t)Rt
agent,i, (C)

where w(t) =
γt∑T

k=1 γ
k
, γ = 0.9. (D)

In practice, the collision guide is computed only for agents
with non-zero velocity, 1agent(i) = 1. This ensures that
stationary agents are excluded from the collision penalty,
and the final agent collision guidance is calculated overall
M agents as:

Ragent =

M∑
i=1

1agent(i)Ragent,i. (E)

Map Collision. We introduce a map collision guide func-
tion to ensure that agents remain in drivable areas and avoid
off-road regions. The function provides gradients that guide
the agent back onto the road by considering the spatial re-
lationship between off-road and on-road points within the
agent’s bounding box. For each agent i at timestamp t, we
sample a set of points P t

i arranged in a 10×10 grid along the
width and height within its bounding box. This set of points
is then divided into an on-road set Ot

i and an off-road set F t
i

with as follows:

Ot
i = {p ∈ P t

i | M(p) = 1}, (F)

F t
i = {p ∈ P t

i | M(p) = 0}, (G)

where M(p) returns 1 if the point p is on-road and 0 oth-
erwise. The map collision guide encourages off-road points
poff to align more closely with the on-road region by mini-
mizing their distance to the nearest on-road point pon. Ad-
ditionally, we apply the same exponential decay weighting
function w(t) as defined in the agent collision guide below:

Rt
map,i =

∑
poff∈F t

i

(
1− min

pon∈Ot
i

∥pon − poff∥2
)
, (H)

Rmap,i =

T∑
t=1

w(t)Rt
map,i, (I)

1map(i) ensures the map loss is applied only to agents that
are moving and partially on- and off-road(i.e., Ot

i ̸= ∅ and
F t
i ̸= ∅). We calculate the map collision guide as follows:

Rmap =

M∑
i=1

1map(i)Rmap,i. (J)

Speed. We employ a speed limit guide function to ensure
that agents adhere to both a predefined maximum speed
vmax and a minimum speed vmin, promoting safe and con-
trolled behavior. Let vti denote the speed for agent i at
timestamp t, and the speed limit guide is defined as the
amount by which the predicted speed deviates from the al-
lowable range [vmin, vmax], computed as:

Rt
speed,i = max(vti − vmax, 0) + max(vmin − vti , 0), (K)

Rspeed,i =

T∑
t=1

w(t)Rt
speed,i, (L)

Rspeed =

M∑
i=1

1speed(i)Rspeed,i, (M)



where w(t) is an exponential decay weighting function and
1speed(i) is an indicator function that evaluates to 1 for
agents with non-zero velocity and 0 otherwise. Finally, the
guide J is defined as follows:

J =
∑

i∈{agent, map, speed}

wiRi (N)

In Table 7, the weights are set as wagent = 50, wmap = 1, and
wspeed = 1 when each respective guide is used. If a guide is
not utilized, its corresponding weight is set to 0.

A.3. Ego-centric Conversion

Drawing Map. To generate the input maps, we utilize
the nuScenes map API to extract relevant map data. Fo-
cusing on an area of 60m × 60m centered around the ego
vehicle, we include the following components: [’drivable
area’, ’road segment’, ’lane’, ’ped crossing’, ’walkway’].
We overlay other vehicles onto the map at their correspond-
ing coordinates, accurately rendering each vehicle by incor-
porating their size and orientation.

Rotation Matrix. We now describe the rotation matrix
used in Equation 8. As illustrated in Figure A, the new
coordinate system for the ego agent is defined by plac-
ing the ego’s position (sx, sy) at the origin and align-
ing the vehicle’s heading direction (north) with the y-axis.
First, the position of an arbitrary point (x, y) is trans-
lated to (x − sx, y − sy) to account for the ego’s position.
Given that the vehicle’s heading is rotated counterclockwise
by sθ radians relative to the original coordinate system,

Figure A. The coordinate trans-
formation for the ego-vehicle.

the rotation of the trans-
lated point is determined
by rotating axis by π

2 −
sθ radians clockwise about
the origin. This is equiv-
alent to counterclockwise
rotation by the same radi-
ans. The standard rotation
matrix for rotating a point
counterclockwise by an an-
gle α is:

R(α) =

(
cosα − sinα
sinα cosα

)
(O)

Substituting α = π
2 − sθ and applying trigonometric identi-

ties, the transformation is given by the following equation:

T (x, y; s) =

(
sin sθ − cos sθ
cos sθ sin sθ

)
×
(
x− sx
y − sy

)
. (P)

B. E2E AD Network Details

B.1. Motion Forecasting

Motion forecasting module predicts motion trajectories x̂ ∈
RM×N×T×2 for M agents over T timestamps with pos-
sible N series of waypoints (x, y). We prepare Emotion,
Eagent, and Eego by encoding normalized anchors and po-
sitional information through embedding layers with trans-
formations. Emotion contains information from anchors rep-
resenting general motion patterns (e.g., turning left, going
straight); Eagent represents motion patterns in each agent’s
own coordinate system, focusing on motion offsets rela-
tive to the agent’s current position and orientation; and Eego
embeds how each agent’s potential trajectory relates to the
ego vehicle’s position and orientation. By feeding these in-
puts to the MotionEncoder, which consists of Transformers
and MLP layers, we generate the motion query embedding
qmotion:

qmotion = MotionEncoder(Emotion, Eagent, Eego). (Q)

Using qmotion and the BEV feature B, the MotionDecoder
produces the refined motion query q̂motion,

q̂motion = MotionDecoder(qmotion, B). (R)

The final motion prediction x̂ is then computed by feeding
q̂motion into MLP layers: x̂ = MLP(q̂motion). Simultane-
ously, the model predicts the probabilities pk for each tra-
jectory x̂k by passing q̂motion through MLP layers, followed
by a log softmax activation.

B.2. Occupancy Prediction.

To estimate the future occupancy of the scene, we predict
a sequence of occupancy maps Ô = {Ô1, ..., ÔT }, where
each Ôt ∈ RH×W corresponds to the occupancy at times-
tamp t. First, the instance-level embedding qins ∈ RM×D

is derived from q̂motion through MLP layers, where M and
D are the number of agents and embedding dimension. At
each timestamp t, we feed qins into another MLP to generate
temporal queries: qttemp = MLPt(qins). Simultaneously, the
raw BEV feature B ∈ RC×Hbev×Wbev is reduced and down-
scaled to produce an initial state B0

state ∈ RC×Hbev
4 ×Wbev

4 . A
transformer-based decoder, referred to as the OccDecoder,
then updates Bt−1

state by incorporating qttemp, producing an up-
dated BEV feature Bt

state as follows:

Bt
state = OccDecoder(Bt−1

state , q
t
temp). (S)

After passing through additional upsampling, the final BEV
features and the instance queries are fused via an element-
wise dot product across the channel dimension, producing
the occupancy logits Ô.



C. Training Details
C.1. Map-to-BEV Network
We first initialize the BEV Query QB of Map-to-BEV net-
work from the pre-trained BEVFormer [17] We employ
ResNet50 as the map encoder, utilizing only the layers up
to the point before the pooling layer. Transformer encoder
comprises 6 blocks, each including a cross-attention layer, a
feedforward network, and normalization layers with resid-
ual connections. Our training setup involves the AdamW
optimizer with a cosine annealing scheduler over 20 epochs,
including a warm-up phase during the first 5 epochs. We
set the learning rate to 5 × 10−4 and apply a weight decay
of 0.01. The momentum parameters are configured with
β1 = 0.9 and β2 = 0.999.

In Table 6, we implement the SwinUNETR architecture
following the official implementation. When utilizing Swi-
nUNETR, we set the feature size to 48 and the drop rate
to 0.2 and increase the input map size to 800 for sufficient
performance. For other training configurations, we use the
same as those used in our experiments with the proposed
architecture.

C.2. Training SynAD
The E2E AD model consists of perception (tracking, map-
ping), prediction (motion forecasting, occupancy predic-
tion), and planning modules. Existing models include those
where each module is serialized [12] and those where they
are configured in parallel [28]. To appropriately train the
E2E AD model using two different types of inputs, multi-
camera and map inputs, we suitably combine two design
principles. The perception module detects and tracks each
vehicle and pedestrian from the multi-camera input and rec-
ognizes the map composition through segmentation. In
cases where map input is provided instead of multi-camera
input, the perception module does not need to operate.
Therefore, we design the perception module to operate in-
dependently by configuring it in parallel. In the prediction
module, motion forecasting uses only BEV features as in-
put, while occupancy prediction uses the BEV features and
the output of motion forecasting, q̂motion, as inputs. The
planning module uses only BEV features as input during
training, and during inference time, it uses the output of oc-
cupancy prediction, Ô, along with test-time optimization to
reduce the collision rate.

Module Configurations. The motion forecasting module
takes three embeddings(Emotion, Eagent, Eego) along with
the BEV feature as inputs. The BEV feature has a chan-
nel dimension of 256 and spatial dimensions of 200× 200.
Emotion, Eagent, Eego each have shapes M ×N × 256, where
M is the scenario-dependent number of agents and N = 6
represents the number of possible paths. These embeddings

are initialized with learnable parameters of size 100, then
sliced according to the number of agents in each scenario.
The queries q̂motion and qmotion share the same shapes as their
embeddings. The module outputs x̂ ∈ RM×N×T×2, where
T = 12. In the occupancy prediction module, q̂motion passes
through an MLP layer to form a tensor of shape M × 256,
and we also define qttemp ∈ RM×256. In the planning mod-
ule, qplan and q̂plan each have shape 1× 256, and Ba retains
the same dimensions as B.

Loss Configurations. When λmotion, λocc, and λplan in
Equation 23 are all set to 1.0, the detailed loss coefficients
for each module are as follows: The loss coefficients λJNLL
and λminFDE in the motion forecasting are set to 0.5 and 0.25,
respectively. The loss coefficients λdice and λbce in the oc-
cupancy prediction are set to 1.0 and 5.0, respectively. In
the planning, we used three values for δ: 0, 0.5, and 1.0.
Accordingly, the loss coefficients λδ are set to 2.5, 1.0, and
0.25, respectively.

Hyperparameter Configurations. We use the AdamW
optimizer with a learning rate of 2 × 10−4 and a weight
decay of 0.01. We utilize a cosine annealing learning rate
scheduler with a warm-up phase lasting for the initial 500
iterations at a ratio of one-third. We employ a cosine an-
nealing learning rate scheduler, performing warm-up for the
first 500 iterations at a ratio of one-third, and set the mini-
mum learning rate to 2× 10−7. The momentum parameters
are set to β1 = 0.9 and β2 = 0.999.

D. Reporting Rules for Other Works.
In Table 1, we evaluate our generated paths using the
CTG++ [37] metrics, and the baseline performances are
taken from the same reference. In Table 2, the reported re-
sults for UniAD [12], VAD, and ParaDrive [28] come from
the most recent ParaDrive paper. For OccNet [26] and Oc-
cWorld [36], we use the performance as reported in Occ-
World, selecting the best reported results. In Table 3, we
obtain the performances of UniAD and VAD via their offi-
cial codebases, and we rely on our own implementation for
ParaDrive due to the lack of publicly available code. For
the same reason, we adopt the VAD evaluation protocol for
planning.


