
VIGFace: Virtual Identity Generation for Privacy-Free Face Recognition dataset

Supplementary Material

Face Recognition Model Training Configurations

Head AdaFace

Margin (m) 0.4

Scale (s) 64

Augmentation Random Erase × Rescale × Jitter

Augmentation ratio 0.2 × 0.2 × 0.2

Reduce LR epochs (S, L) [24, 30, 36], [12, 20, 24]

Epochs (S, L) 40, 26

Backbone IR-SE50

Batch Size 512

Initial Learning Rate 0.1

Weight Decay 5e-4

Momentum 0.9

FP16 True

Optimizer SGD

Table 3. Configurations for training the FR network. (S) and (L)

represent training using the small dataset (< 1.0M) and the large

dataset (� 1.0M), respectively.

A. Implementation Details

For stage 1: We use a modified ResNet-50 [9] and Arc-

Face [9] to train the face recognition (FR) backbone. The

CASIA-WebFace [22] dataset serves as training data. Fol-

lowing the alignment method in [32], the facial images are

aligned with a resolution of 112 × 112. After alignment,

the pixel values are normalized, with both the mean and

standard deviation set to 0.5. We set the mini-batch size

for the real dataset to 512 and use Stochastic Gradient De-

scent (SGD) as the optimizer, with a weight decay of 5e-4

and momentum of 0.9. The initial learning rate is set to 0.1

and divided by 0.1 in the 24th, 30th, and 36th epochs, with

training concluding at the 40th epoch. The ArcFace hyper-

parameters for the margin m and the scale factor s are set

to 0.5 and 30, respectively.

For stage 2: To generate synthetic face images, we ex-

plore the best setting for the diffusion model. To facilitate

comparison, we utilized the widely adopted DiT-B model

for all experiments. Since the traditional FR model typi-

cally employs a resolution of 112 × 112 for face images,

we set the window size of the DiT patch extractor to 4. We

follow the publicly released implementation of DDIM [46]

with the cosine noise scheduler [7]. Following the approach

of the previous method [31], we employ the enforced zero

terminal SNR and trailing timesteps. The diffusion model

is trained for 5M iterations with a batch size of 512 using

AdamW Optimizer [30, 33] with a learning rate of 1e-4.

For sampling, we used classifier-free guidance implementa-

tion [19] in 50 time steps.

Implementation details for FR training: We provide the

configurations for the FR network training that are used in

Sec. 4.2. We strongly refer to the training methods pro-

posed in [15, 28, 55] to set the hyperparameters. Detailed

configurations can be found in Tab. 3. We adjusted train-

ing epochs and learning rate scheduling strategies based on

the dataset size. Following [28], we employ random eras-

ing, rescaling, and color jittering as data augmentation, es-

pecially when training with AdaFace. Random erasing is

applied by filling randomly selected regions with pixel val-

ues of 0. The erased region size is randomly set between

0.02 and 0.33 times the original image width, with an as-

pect ratio varying between 0.3 and 3.3. For rescaling, each

face image is first shrunk and then restored to its original di-

mensions. The shrinking ratio is randomly selected between

0.2 and 1.0 times the original image width. To ensure diver-

sity, we randomly apply one of the following interpolation

methods during shrinking and restoration: nearest-neighbor

interpolation, bilinear interpolation, bicubic interpolation,

pixel area relation interpolation, and Lanczos4 interpola-

tion. For color jittering, we randomly adjust the brightness,

contrast, and saturation of the input image, with each factor

modified within a range of 0 to 0.5 relative to the original

image.

B. FR training using unified configuration

Training configuration, such as training loss, augmenta-

tions, and hyperparameters, is vital to the performance of

FR models. However, conventional works have conducted

the training based on their own configuration. In this sec-

tion, we present reproduced experiments trained under the

unified implementation except the training dataset in Tab. 4.

As the training code of conventional methods for SFR is

not released, we utilize margin(m) with 0.5, and scaling

factor(s) with 30 and 64, following the original paper [9]

settings.

As shown in Fig. 7, we observed that ArcFace with a

scaling factor (s) of 64 failed to train stably in the conven-

tional datasets due to the gradient explosion. The high s
makes the softmax operation more steep near the decision

boundary [28]. This leads to a gradient explosion during

training when the data includes unrecognizable samples or

label noise. CASIA-WebFace is known to include around

9.3% − 13.0% of label noise data [52]. In contrast, since

VIGFace has high consistency, it is free from label noise

and enables stable backbone training.

Note that the entire framework in VIGFace was trained

using only CASIA-WebFace, without any external datasets



Figure 7. Loss log during training of FR backbone.

Training Dataset Method
Average

Accuracy

IJB-C [34] TPR@FPR

1e-4 1e-3 1e-2

CASIA-Webface

Arc. (s:30) 94.28 83.44 91.22 96.22

Arc. (s:64) 70.16 15.07 29.26 50.30

Ada. 94.93 77.65 92.66 96.89

DCFace (0.5M)

Arc. (s:30) 84.80 60.29 76.42 88.97

Arc. (s:64) 71.50 11.37 22.62 41.07

Ada. 89.07 77.24 87.51 94.01

CemiFace (0.5M)

Arc. (s:30) 85.57 37.85 77.33 90.09

Arc. (s:64) 72.88 18.92 33.81 54.94

Ada. 90.54 83.11 90.41 95.39

HSFace10K

Arc. (s:30) 85.39 73.94 82.18 89.67

Arc. (s:64) 71.22 14.16 27.24 45.81

Ada. 90.22 86.10 91.04 94.92

Arc. (s:30) 91.19 69.27 82.64 91.78

Arc. (s:64) 92.37 72.53 85.14 92.98VIGFace (S)

Ada. 92.56 80.00 89.22 94.99

Arc. (s:30) 94.00 80.33 88.87 94.69

Arc. (s:64) 94.27 81.69 89.79 95.15VIGFace (B)

Ada. 94.64 83.29 91.22 95.97

Table 4. Re-implemented FR benchmark results trained under

unified configurations. The FR models used in the table were

trained with the same implementation details, following original

papers [9, 28].

or a pre-trained large model such as CLIP [41].

C. Stage 1 : Virtual prototype assignment
Performance of backbone in Stage 1: We evaluate the

performance of the trained backbone achieved at the end

of stage 1. Given that our approaches employ virtual pro-

totypes, it is essential to guarantee that the virtual proto-

type does not affect the FR backbone training. As can be

seen in Tab. 5, our approach maintains the benchmark face

recognition performance with negligible changes.

Pre-assigning vs Sampling: In Stage 1, VIGFace em-

ploys a pre-assignment strategy for virtual prototypes

within the feature space, maximizing inter-prototype dis-

tances through the ArcFace loss. The ArcFace loss explic-

itly enforces a substantial margin between distinct identi-

ties in the feature space, ensuring that virtual prototypes are

highly discriminative. This potentially yields superior iden-

tity separation compared to random sampling approaches,

Dataset Real Prototype Virtual Prototype
Average

Accuracy
IJB-C

CASIA-Webface 10.5K
- 94.28 83.44

60K 94.30 83.46

Table 5. Benchmark results of the stage 1: FR model which

employs different number of virtual prototypes. For IJB-C,

TPR@FPR=1e-4 is reported.

which rely on fixed similarity thresholds. Our theoretical

analysis for the high separation of virtual identities is also

supported by our property analysis in Fig. 6a. In addition,

since the embedding vectors used in the generative model

are closely aligned, VIGFace produces synthetic faces that

follow the actual data distribution better than the random

sampling method.

Although training virtual prototypes for a huge number

of identities (e.g. millions or billions) requires a large-scale

classifier, making VIGFace computationally intensive com-

pared to sampling methods. However, this challenge can be

mitigated by integrating techniques such as Partial-FC [1],

which optimizes computational efficiency while maintain-

ing performance.

Scalability of virtual prototype: Our method demon-

strates that all virtual prototypes can nearly maintain or-

thogonality after stage 1. From probabilistic geometry [6],

if there are N identities following a uniform distribution,

the minimum cosine distance between two vectors in a fea-

ture space of dimension d can be approximated as follows:

cos(θ) ≈
√

logN

d
. (12)

This implies that the 512 feature dimension, which is used

in our experiments, is large enough to sort 108 identity fea-

tures while preserving nearly orthogonal.

D. ROC of IJB-C benchmarks

We compare the Receiver Operating Characteristic (ROC)

curves using the IJB-C [34] dataset. Fig. 8 presents the ROC

curves of IJB-C for VIGFace. We observe that VIGFace



(a) IR-SE50 + ArcFace (s:30). (b) IR-SE50 + AdaFace.

Figure 8. ROC on IJB-C benchmarks.

outperforms real datasets at low FPR (< 1e−4) on AdaFace

trained models.

E. Face Image Quality distribution

Figure 9. FIQA score distribution of various methods. For better

visibility, scores are min-max normalized.

We provide the Face Image Quality (FIQ) score dis-

tribution of VIGFace and conventional methods obtained

using a SOTA face image quality assessment method [4].

Fig. 9 shows FIQA score distribution of various synthetic

datasets. To enhance clarity and facilitate comparison, the

figure presents the normalized values. Note that a higher

FIQ score does not indicate a good dataset for FR train-

ing. Ideally, FR training requires a diverse dataset, rang-

ing from easy to hard, for optimal performance. As can be

seen in Fig. 9, HSFace and CemiFace considerably include

hard-case images. Since the IJB set also consists of mixed-

quality images, training with these datasets might be bene-

ficial for the IJB benchmark. However, samples in Fig. 18 -

Fig. 20 show that HSFace and CemiFace contain significant

low-quality images, such as blurred or distorted faces.

F. Similarity distribution analysis
We provide the similarity distribution of various datasets,

including real and synthetic datasets. To achieve embedding

features, we utilized a pre-trained ArcFace model trained

on the Glint-360K dataset. As shown in Fig. 10, CASIA-

WebFace contains some label-noised samples that can hin-

der stable backbone training. In other datasets, we observe

significant overlap between positive and negative distribu-

tions. This implies that the dataset contains ID-flipped sam-

ples (or may be impossible to recognize), which can also

make backbone training unstable. Meanwhile, VIGFace

demonstrates high consistency and separation in the dataset.

G. Samples using multi-view landmark
We generate face images using landmark images with var-

ious 25 poses. The samples generated from both real and

virtual ID prototypes are presented in Figs. 12 to 17. In

the figure, we report the cosine similarity between the class

center fk and the generated image xk. As shown in the fig-

ure, VIGFace can generate pose variational images without

identity flipping, maintaining high similarity.

H. Samples from failure case
In this section, we compare the failure case in terms of three

important properties of the datasets, which are consistency,

separability, and diversity. We sample images from the low-

est 5% subjects of each property to illustrate the effective-

ness of VIGFace in the failure case.

Subjects exhibit the lowest consistency Fig. 18 shows

the failure case images generated by conventional meth-

ods [2, 5, 29, 35, 40, 48, 55] and our methods. We re-

port virtual subjects that exhibit the lowest 5% class consis-



Figure 10. Similarity Distribution of various dataset.

tency in each dataset. In other words, the depicted subjects

have a propensity to label-flip bias. As illustrated in the fig-

ure, VIGFace demonstrates outstanding consistency while

maintaining high diversity in image conditions. This sug-

gests a minimal risk of label-flip bias and supports effective

FR training. DigiFace also maintains high consistency, as it

is based on 3D modeling. However, since the appearance of

the DigiFace dataset does not align with real face images,

the performance of an FR backbone trained on DigiFace is

considerably subpar for real-world use cases.

Subjects exhibit the lowest separability Fig. 19 shows

the failure case images generated by conventional [2, 5, 29,

35, 40, 48, 55] and our methods. We report virtual sub-

jects among those who exhibit the highest 5% cosine simi-

larity. Generating overly similar or identical objects can re-

sult in label-noised data and negatively impact FR training.

As shown in the figure, conventional methods often gener-

ate output that resembles the same object. This indicates

a lack of the ability to generate entirely novel individuals.

For example, SynFace samples exhibit high similarities be-

tween objects because they utilize a mix-up to generate face

images. As GANDiffFace relies on StyleGAN to create vir-

tual identities, it shows limited capability in producing new

subjects. CemiFace often produces distorted face images,

and those subjects exhibit a high similarity score.

Subjects exhibit the lowest diversity Fig. 20 shows the

failure case images generated by conventional [2, 5, 29, 35,

40, 48, 55] and our methods. We report virtual subjects

among those who exhibit the lowest 5% intra-class diver-

sity in each dataset. Note that intra-class diversity does not

pertain to changes in characteristics but relates to hard sce-

narios such as variations in pose, lighting conditions, oc-

clusion, and resolution. As diversity evaluation employs

FIQA methods, which assess the difficulty level of gener-

ated face images for recognition purposes, the resulting di-

versity score might not entirely align with human percep-

tion. Nevertheless, it can be observed that subjects with low

diversity consist only of high-quality frontal faces. How-

ever, even low-diversity subjects generated with VIGFace

have a high-quality yet diverse pose or lighting.

I. Identity leakage
To assess the potential for data or identity leakage in gener-

ative models, we search for the most similar face from the

training dataset. For this experiment, we query the feature

similarity for every sample in the training dataset. Fig. 11

shows that the most similar samples between the synthetic

dataset and the corresponding training dataset. CemiFace

generates facial images from identity embedding vectors,

and it samples synthetic identity vectors from WebFace4M.

Consequently, this results in CemiFace producing individ-

uals with the actual person. Vec2Face fails to create non-

existent identity, resulting in HSFace having individuals

that are nearly identical to those in WebFace4M. As shown

in the figure, our virtual identities are free from identity

leakage.

Figure 11. Training data leakage example. To assess the poten-

tial identity leakage, we search for the most similar face from the

training dataset. We indicate the cosine similarity between the im-

ages.



Figure 12. Multiview facial images from real ID

Figure 13. Multiview facial images from real ID



Figure 14. Multiview facial images from real ID

Figure 15. Multiview facial images from virtual ID



Figure 16. Multiview facial images from virtual ID

Figure 17. Multiview facial images from virtual ID
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Figure 18. Low consistency subjects generated with various methods. Each row presents samples from the same ID that exhibits the lowest

5% consistency. The class consistency of each ID is indicated in the top-left corner.
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Figure 19. Inferior separability subjects generated with various methods. Each row presents samples from the top 5% most similar subject

pairs, with the cosine similarity between the two subjects indicated.
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Figure 20. Low diversity subjects generated with various methods. Each row presents samples from the same ID that exhibits the lowest

5% diversity. The class diversity of each ID is indicated in the top-left corner.


