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Figure S1. Visualization of samples from the MicroMat-3K test set, providing a high-quality benchmark for zero-shot matting models.

A. MicroMat-3K Details

Inspired by the data engine procedure in the SAM [23], we
constructed the MicroMat-3K test set. The dataset con-
struction involved four key steps: (1) We collected high-
resolution images from the DIV2K dataset [1], which is
originally intended for super-resolution tasks. (2) We gener-
ated pseudo-segmentation labels using automatic mask gen-
eration of SAM, powered by a large backbone model to en-
sure high-quality segmentation. (3) We transformed these
segmentation labels into matte labels using our label con-

verter, which is also powered by a large backbone network.
This step provided an initial set of pseudo-matte labels for
each image. (4) Our annotators inspected the pseudo-matte
labels. High-quality labels were directly retained as ground-
truth annotations, while any low-quality matte labels were
manually revised to ensure high-fidelity ground-truth la-
bels. Additionally, we categorized the final matte labels into
two classes: fine-grained masks (750 samples) and coarse-
grained masks (2250 samples). Figure S1 showcases vi-
sualization examples from MicroMat-3K, which provides
diverse and high-quality micro-level matte labels.



B. Downstream Task

B.1. Zero-Shot Image Matting

To showcase the generalizability of ZIM, we evaluate
it across 23 diverse datasets, including ADE20K [56],
BBBCO038vl [6], Cityspcaes [12], DOORS [35], Ego-
HOS [55], DRAM [11], GTEA [17, 28], Hypersim [40],
IBD [8], iShape [48], COCO [29], NDD20 [46], NDIS-
Park [9, 10], OVIS [36], PIDRay [47], Plittersdorf [20],
PPDLS [33], STREETS [42], TimberSeg [18], Trash-
Can [21], VISOR [13, 14], WoodScape [52], and
Zero Waste-f [4]. Using the Automatic Mask
Generation strategy introduced by SAM [23], we apply
a regular grid of point prompts to each image and perform
post-processing with thresholding and non-maximum sup-
pression (NMS) to generate the final matting masks. Fig-
ure S2 and Figure S3 show that ZIM produces high-quality
matte anything results for all datasets with considerably de-
tailed matte quality and powerful generalization capability.
Although SAM shows powerful generalization capability,
the output mask is the coarse quality. In addition, existing
interactive matting methods (¢.e., Matte-Any [49], Matting-
Any [27], and SMat [50]) often fail to generalize the unseen
data.

B.2. Image Inpainting

Image inpainting is an important application in generative
Al where precise mask generation plays a critical role in re-
moving or reconstructing parts of an image. Following the
Inpaint Anything framework [54], we guide SAM and ZIM
masks to the inpainting model [45]. As shown in Figure
S4, ZIM produces more accurate object masks than SAM,
leading to significantly better inpainting results. For com-
plex objects like flowerpots and hair, SAM’s coarse masks
fail to remove the object cleanly, leaving noticeable arti-
facts. In contrast, our precise matting masks enable the
inpainting model to smoothly remove objects without ar-
tifacts. To provide quantitative analysis, we use CLIP Dis-
tance and CLIP Accuracy [16, 51] as evaluation metrics.
CLIP Distance measures the similarity between the source
and inpainted regions, where a larger distance indicates bet-
ter removal. CLIP Accuracy evaluates the change in class
predictions after removal, considering the task successful
if the original class is absent from Top-1/3/5 predictions.
Following [51], we use the text prompt a photo of a
{category name}. Table S| shows that ZIM outper-
forms SAM on both metrics by better preserving surround-
ing context after inpainting through enhanced mask quality.

B.3. 3D Object Segmentation with NeRF

The quality of the segmentation mask is crucial when con-
verting a 2D mask into a 3D representation. In this work,

. CLIP Acc 1
Mask ‘ CLIP Dist 1 ‘ Top-1 Top-3 Top-5
COCO GT [29] 67.07 0.7767 0.6236 0.5415
SAM [23] 68.17 0.7940 0.6521 0.5753
ZIM (ours) 73.11 0.8616 0.7543 0.6855

Table S1. Quantitative results of image inpainting using the In-
painting Anything framework [54]. The inpainting model takes
three types of input masks (COCO ground-truth [29], SAM [23],
and ZIM) and we evaluate the corresponding inpainting results us-
ing CLIP distance and accuracy metrics [16, 51].

Mask IoU (%) 1
Scenes SAM ZIM
Fern 84.9 86.6
Flower 94.0 95.7
Fortress 96.5 98.1

Horns-center | 94.0 97.4
Horns-left 92.9 94.7

Leaves 92.2 92.9
Orchids 89.9 91.8
Trex 83.7 85.4

Table S2. Quantitative results of mask IoU scores on the target
view for the NVOS dataset [39].

we adopt the SA3D framework [7], which utilizes SAM to
segment 3D objects from 2D masks by manually prompt-
ing the target object in a single view. By replacing SAM
with ZIM in the 2D mask segmentation process, we signifi-
cantly improve the quality of the resulting 3D objects. Fig-
ure S5 presents the qualitative results of segmented 3D ob-
jects guided by the SAM and ZIM models on the LLFF-trex
and LLFF-horns [32] dataset. Compared to SAM, which
often misses finer details due to its coarse-level mask gen-
eration, ZIM captures more intricate object features. These
findings demonstrate that the precise matting capabilities of
ZIM extend beyond 2D tasks, significantly enhancing the
quality of 3D object segmentation. For quantitative evalu-
ation, we employ the NVOS [39] dataset, which includes
finely annotated 2D masks. Since the SA3D framework re-
lies on binary masks for projecting 2D masks into 3D space,
we binarized the ZIM results using a threshold of 0.3. We
fixed the number of self-prompting points at 10 and fol-
lowed the experimental setup of SA3D [7] for pre-trained
NeRFs and manual prompts. As shown in Table S2, ZIM
outperforms SAM in quantitative 3D segmentation results
on the target view, reporting higher mask IoU scores. These
findings demonstrate that the precise matting capabilities of
ZIM extend beyond 2D tasks, significantly enhancing the
quality of 3D object segmentation.
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Figure S2. Qualitative samples of automatic mask generation results on (1) ADE20K [56], (2) BBBCO038v1 [6], (3) Cityscapes [12],
(4) DOORS [35], (5) EgoHOS [55], (6) DRAM [11], (7) GTEA [17, 28], (8) Hypersim [40], (9) IBD [8], (10) iShape [48], and (11)
COCO [29] datasets.
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Figure S3. (continue) Qualitative samples of automatic mask generation results on (12) NDD20 [46], (13) NDISPark [9, 10], (14)
OVIS [36], (15) PIDRay [47], (16) Plittersdorf [20], (17) PPDLS [33], (18) STREETS [42], (19) TimberSeg [ 18], (20) TrashCan [21], (21)
VISOR [13, 14], (22) WoodScape [52], and (23) ZeroWaste-f [4] datasets.
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Figure S4. Qualitative results of three kinds of input masks (¢.e., COCO ground-truth [29], SAM [23], and ZIM) along with their
corresponding image inpainting results using the Inpainting Anything framework [54].

SAM ZIM (ours)

Figure S5. Qualitative samples of 3D object segmentation results guided by SAM [23] and ZIM models within the SA3D framework [7]
for the LLFF-trex, LLFF-horns [32], and 360°-kitchen (Lego) [3] datasets.
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Figure S6. Qualitative samples of SAM and ZIM output masks
on the medical image datasets [2, 19, 34, 44] using the box prompt.

B.4. Medical Image Segmentation

Segmentation models are essential in medical image anal-
ysis, where they assist in identifying key anatomical struc-
tures and abnormalities. Building on the recent evaluation
of SAM’s performance in medical imaging by [31], we ex-
plore the applicability of ZIM for zero-shot medical im-
age segmentation. Given that neither SAM nor ZIM has
been trained on medical image datasets, this experiment fo-
cuses on evaluating their zero-shot segmentation capabili-
ties. Both SAM and ZIM, using the ViT-B backbone, are
evaluated across five medical imaging datasets: the hip-
pocampus and spleen datasets from the Medical Image De-
cathlon [2], an ultrasonic kidney dataset [44], an ultrasonic
nerve dataset [34], and an X-ray hip dataset [19]. Since
these datasets comprise binary ground-truth masks, we ap-
ply a threshold of 0.3 to the matte output of ZIM. Following
the evaluation protocol from [31], we employ five prompt
modes: (1) a single point at the center of the largest con-
tiguous region, (2) multiple points centered on up to three
regions, (3) a box surrounding the largest region, (4) multi-
ple boxes around up to three regions, and (5) a box encom-
passing the entire object.

Figure S7 illustrates the distribution of IoU scores across
the five datasets for each prompt mode. These results show
that ZIM consistently outperforms SAM, particularly in
point-based prompts (modes 1 and 2). In addition, as shown
in Figure S6, SAM frequently exhibits checkerboard arti-
facts when dealing with the indistinct visual details of med-
ical images. In contrast, ZIM produces more robust and
precise segmentation masks due to our advanced pixel de-
coder. This demonstrates ZIM’s strong generalization on
unseen and complex medical image data, highlighting its
superior zero-shot capabilities compared to SAM.
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Figure S7. Mask IoU distribution across the five medical image
analysis datasets [2, 19, 34, 44] for the five prompt modes.

C. Additional Experiemental Results
C.1. Detailed Experiment Settings

We evaluate interactive matting performance using point
and box prompts derived from ground-truth masks. For
point sampling, we adopt RITM [43] with a maximum of 12
points. Box prompts are extracted from the min-max fore-
ground coordinates, with up to 10% random perturbation to
assess robustness to noisy box inputs. This sampling strat-
egy is applied to MicroMat3K and public matting datasets
such as AIM-500 [25] and P3M-500-NP [24].

ZIM is trained on 1% of SA1B-Matte, containing 2.2M
matte labels. Since SAM pre-trained weights are utilized,
increasing the training data to 10% did not yield notice-
able improvements, indicating that 1% suffices for enhanc-
ing fine-grained representations.

All experiments are conducted using 8 V100 GPUs.
Training the label converter and ZIM takes approximately
7 and 5 days, respectively.

C.2. Detailed Quantitative Comparison

Table S3 provides an in-depth evaluation of zero-shot mat-
ting models, with additional experiments utilizing various
backbone networks: ViT-L and ViT-H [15] for SAM [23],
HQ-SAM [22], and Matte-Any [49], and Hiera-L [41] for
SAM?2 [37]. Furthermore, we investigate model behavior
based on the size of the target object by defining three ob-
ject size groups, according to the ratio of the foreground
region in the image: small (ratio < 1%), medium (1% <
ratio < 10%), and large (ratio > 10%). The MSE error
is reported for each object size group, offering a detailed
understanding of model performance across varying object
sizes. Additionally, we measure the model throughput using
an NVIDIA V100 GPU to assess computational efficiency.



Latency Fine-grained| Coarse-grained |
Method Backbone | = p | PP VSR | MSEs | MSEy | MSE; | MSE | MSEs | MSEy | MSE,
. point | 21.651 | 2717 | 7.145 | 70.502 | 5.569 | 4.092 | 5.405 | 77.761
VITB [15] 17251 “pox | 11057 | 0329 | 2983 | 38501 | 1.044 | 0181 | 2456 | 24.519
SAM [23] VITL [15] 2616 | point | 15663 | 3312 | 5165 | 49202 | 4293 | 3.640 | 3.389 | 46278
- : box | 7.989 | 0320 | 2423 | 27276 | 0534 | 0.145 | 1.606 | 5.575
. point | 14.534 | 3.619 | 5.753 | 43.371 | 2.100 | 0.653 | 3.278 | 56.086
VITHIIS] | 6052 1 "0 | 6188 | 0281 | 1.687 | 21389 | 0468 | 0152 | 1334 | 4610
o point | 25296 | 15.657 | 15.970 | 53.346 | 14.794 | 14.786 | 12.128 | 49.058
SAM2 [37] Hiera-B+ [41] | 1474 1 S " | 12004 | 0322 | 21155 | 43670 | 0613 | 0.152 | 1.600 | 10.194
. point | 16937 | 0.871 | 5.613 | 56702 | 2.572 | 0.954 | 4.308 | 57.804
Hiera-L [41] | 195.0 box | 10.616 | 0.263 | 1.888 | 38.636 | 0.704 | 0.149 | 1.424 | 18.019
. point | 36.674 | 5.094 | 9356 | 123.199 | 6.457 | 3.602 | 9.596 | 102.834
VITB [15] 772 1 Yoox | 42457 | 0392 | 4369 | 160456 | 2733 | 0230 | 2521 | 124372
HQ-SAM [22] VITL [15] 368 | point | 20481 | 1928 | 6496 | 67.979 | 3.046 | 1200 | 4.987 | 66373
. ' box | 19.881 | 0.326 | 2.683 | 73.913 | 0.762 | 0.163 | 1.408 | 21.129
. point | 22.547 | 5308 | 6.601 | 71.446 | 3.599 | 1.659 | 5.034 | 77.643
VITHIIS] | 608.1 box | 23743 | 0263 | 2.538 | 89.518 | 0.789 | 0.164 | 1.266 | 24.469
. point | 20.844 | 3.381 | 7.953 | 65.108 | 6.053 | 4739 | 5.897 | 70.443
VITBLIST | 6685 1 "y | 9746 | 0918 | 3.856 | 31.109 | 1.983 | 1235 | 3.039 | 24.426
Matie-Any [49] | yiry (1) g4y | Point | 15230 | 3985 | 6243 | 44842 | 5116 | 4570 | 3.99 | 44.606
- ' box | 7.323 | 0975 | 3.692 | 21711 | 1597 | 1222 | 2418 | 9.119
- point | 14.119 | 4270 | 7.085 | 38.704 | 3.022 | 1.669 | 3.913 | 56.044
VITHIIS] | 10369 1 5 | 6048 | 0917 | 2992 | 17.872 | 1.571 | 1.228 | 2204 | 8.836
. . point | 77.335 | 27.256 | 41.349 | 202.692 | 36.187 | 31.549 | 40.993 | 197.340
Matting-Any [27] | VIT-B [15] 200.3 box | 68372 | 18.286 | 33.111 | 192.566 | 23.780 | 17.344 | 36.194 | 175.418
N point | 123.664 | 31.549 | 40.993 | 197.340 | 59.113 | 52.305 | 68.709 | 250.587
SMat [50] VITBIIS] | 2634 1 % | 133,515 | 17.344 | 36.194 | 175418 | 61.157 | 53.280 | 74.099 | 261.544
. point | 8213 | 0.870 | 3.962 | 24.934 | 1.788 | 1.444 | 1.731 | 18.983
ZIM (ours) VITB [15] 1878 1 ox 1.893 | 0205 | 2228 | 3.617 | 0448 | 0200 | 1.382 | 0.632
. point | 5.825 | 0563 | 2724 | 17.898 | 1.719 | 1.041 | 1.574 | 35.687
VIT-L{15] 37341 Nhox 1.589 | 0.191 | 1.888 | 2982 | 0.446 | 0.175 | 1458 | 0.686

Table S3. Detailed Quantitative comparison of our ZIM model and six existing methods on the MicroMat-3K dataset. Results are
presented for different backbone networks, model throughput, and MSE scores across object sizes (small, medium, and large). The latency

is measured on the NVIDIA V100 GPU.

The results in Table S3 provide some meaningful in-
sights: (1) ZIM consistently outperforms SAM, especially
for larger objects, as indicated by the M S E}, metric. This
improvement is likely due to the reduction of checkerboard
artifacts, a known issue in SAM’s pixel decoder, which
our advanced decoder addresses effectively, as evidenced
in Figures 1, S2, and S3. (2) ZIM demonstrates highly
competitive results even with the smaller ViT-B backbone,
outperforming models like SAM and HQ-SAM with larger
backbones such as ViT-H. Additionally, the performance
of ZIM with the ViT-L backbone suggests that further im-
provements could be achieved with more powerful archi-
tectures. (3) Despite our advanced decoder, ZIM introduces
only a marginal increase in latency (just 10ms more than
SAM) making it a lightweight and efficient option for zero-

shot matting tasks. (4) Compared to existing matting mod-
els (e.g., Matte-Any, Matting-Any, and SMat), ZIM deliv-
ers superior performance while maintaining efficiency.

C.3. Discussion on Transparency Prediction

In the image matting task, there is a distinct scenario, that
is, predicting the transparency of objects, such as glasses
and fire. Due to its inherent difficulties, existing mat-
ting methods [5, 30, 53] typically rely on curated trans-
parency datasets [5] containing close-up transparent object
images with clear backgrounds, making them effective in
constrained environments but less adaptable to open-world
scenarios. ZIM, on the other hand, is designed for fine-
grained mask representation in general object segmentation
across diverse and complex scenes. However, predicting



Transparent-460 [5]
Model Input MSE | SAD |
IndexNet [30] Trimap | 112.53 573.09
MGMatting [53] | Trimap 6.33 111.92
TransMatting [5] | Trimap | 4.02 88.34
ZIM (ours) Box 15.55 298.78

Table S4. Quantitative results on the transparent object mat-
ting dataset, Transprent-460 [5].

transparency within ZIM remains a challenge due to the
lack of large-scale open-world transparency datasets and
the inherent complexity of identifying transparent regions
in natural images.

To investigate ZIM’s adaptability to transparency predic-
tion, we fine-tune it on the Transparent-460 dataset [5] and
compare its performance against specialized transparency
matting methods [5, 30, 53], as shown in Table 4. While
these methods leverage trimaps to provide explicit spatial
guidance for transparency estimation, ZIM relies only on
sparse box prompts, which offer less precise object bound-
ary information. Despite this limitation, ZIM achieves rea-
sonable results, demonstrating its strong transferability.

C.4. Expanding Prompt Sources

Interactive models, such as SAM, commonly support only
point and box prompts. Here, we demonstrate the potential
ZIM offers a more flexible approach by expanding the vari-
ety of prompt types, including text and scribble prompts.

Text Prompt. To enable text prompts, we integrate ZIM
with the Grounded-SAM framework [38]. Grounded-SAM
uses a grounding object detection model that processes an
image-text pair and returns bounding boxes for objects men-
tioned in the text. ZIM then uses these bounding boxes as
prompts to produce detailed matte outputs. We refer to this
combined model as Grounded-ZIM. As shown in Figure S8,
Grounded-ZIM provides high-quality outputs with a simple
text prompting pipeline, offering more precise and robust
mask generation than Grounded-SAM.

Scribble Prompt. In addition, ZIM can support scribble
prompts, which provide users with an intuitive way to mark
regions of interest. We implement this functionality by sam-
pling points along the scribble path. To ensure comprehen-
sive coverage of the scribble region, we employ uniform
sampling with setting the maximum number of sampled
points to 24. It allows ZIM to effectively handle the scrib-
ble input and generate high-quality matte outputs. Figure
S9 shows an example of how the scribble prompt leads to
accurate and stable results. These expansions highlight the
versatility of ZIM in accommodating diverse input prompts.

ZIM (ours)

Text Prompt SAM

the handsome man
in a gray shirt
standing sideways

o = = =
a man with white g x g 5
T-shirt and black
trousers is sitting
on the ground
next to a woman

the man sitting
in a chair
with his eyes closed

the beautiful girl
in off-white
who is laughing
happily and looking
forward

Figure S8. Qualitative samples of text prompting results on the
RefMatte-RW100 [26] dataset.

Scribble Prompt Sampled Point Prompts Output

Figure S9. Qualitative examples of scribble prompting results.



Model | MSE|
SAM [23] 11.05
SAM [23] + Converter 7.34
SAM [23] + SA1B-Matte 2.71
HQSAM [22] 42.45
HQSAM [22] + SA1B-Matte 13.35
Matting-Any [27] 68.37
Matting-Any [27] + SA1B-Matte | 12.26
ZIM (ours) | 1.89

Table S5. Analysis of our proposed components (:.e., Label Con-
verter and SA1B-Matte dataset) when applied to existing models.

C.5. Additional Ablation Study

Impact of our proposed components on existing segmen-
tation models. Table S5 demonstrates that both the Label
Converter and SA1B-Matte training data provide substan-
tial improvements to baseline performance on the Micro-
Mat3K fine-grained dataset. The Label Converter, when
applied to SAM’s coarse output masks, reduces MSE from
11.05 to 7.34, representing a significant improvement in
fine-grained mask quality. However, the converter can-
not address inherent limitations in SAM’s base predictions,
such as checkerboard artifacts, resulting in performance that
remains below ZIM’s 1.89 MSE.

In addition, training existing models (i.e., SAM, HQ-
SAM, and Matting-Any) on our SA1B-Matte dataset yields
consistent improvements across all models. SAM trained
with SA1B-Matte achieves 2.71 MSE, while HQSAM and
Matting-Any reach 13.35 and 12.26 MSE, respectively. De-
spite these improvements, all existing models underper-
form compared to ZIM, highlighting the importance of
our architectural innovations, including the Hierarchical
Pixel Decoder and Prompt-Aware Masked Attention. The
performance gap is particularly notable for HQ-SAM and
Matting-Any, which rely on the frozen SAM model that
limits their capacity to learn fine-grained representations
during training.

Effect of Hyperparameter o. The hyperparameter o
controls the standard deviation of the 2D Gaussian map
used to create the soft attention mask for point prompts. A
larger o results in a wider spread of the Gaussian, cover-
ing a broader region around the point. Table S6a presents
the performance of the ZIM model using point prompts on
the MicroMat-3K dataset for varying values of ¢. Through
experimentation, we found that setting o to 21 strikes a
balance by generating an appropriately sized soft attention
mask that effectively captures relevant features while mini-
mizing unnecessary coverage.

Fine-grained Coarse-grained
SAD| | MSE| | Grad| | SAD] | MSE| | Grad|

11 | 31.476 | 8381 | 5.505 | 6.741 | 1.816 | 1.538
21 | 31.286 | 8.213 | 5.324 | 6.645 | 1.788 | 1.469
41 | 31.341 | 8298 | 5476 | 6.686 | 1.807 | 1.493

(a)

Fine-grained Coarse-grained
SAD| | MSE| | Grad| | SAD} | MSE| | Grad|

5 | 33.086 | 9.056 | 7.392 | 6.966 | 1.970 | 1.817
10 | 31.286 | 8.213 | 5.324 | 6.645 | 1.788 | 1.469
20 | 31.402 | 8.295 | 5.356 | 6.712 | 1.838 | 1.475

(b)

Table S6. Analysis of ZIM using point prompt evaluations: (a)
Effect of the hyperpameter o. (b) Effect of the hyperpameter A.

A

Effect of Hyperparameter \. The hyperparameter ), as
defined in Eq (1), controls the weight assigned to the Gra-
dient loss, influencing the emphasis on edge detail during
training. We evaluate how different values of A affect the
performance of the ZIM on the MicroMat-3K dataset. The
results in Table S6b indicate that a A value of 10 achieves
optimal performance, providing a balanced trade-off be-
tween smoothness and edge accuracy.

C.6. Additional Qualitative Samples

We provide more qualitative samples for the SA1B-Matte
dataset (Figure S10) and ZIM output mattes (Figure S11).
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