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Table 3. Quantitative Comparison on 3D head avatar creation
from various. Our approach performs competitively when only
a single input image is available, despite not being designed for a
single image use-case. It also performs much better compared to
monocular methods that receive a full video as input. Ours*%N
denotes a 4-shot model where the 4 required images are obtained
from the single input via 3D lifting with a 3D GAN. Ours* *3* de-
notes a model that is additionally fine-tuned on 984 neutral identi-
ties for better identity preservation (CSIM metric).

A. Additional Results

A.1. Avat3rs from Phone Captures and Accessories

Fig. 12 showcases additional phone scans captured by
users on their own devices, including challenging cases with
glasses, rotated inputs, and a NeRSemble subject wearing
a headscarf. Despite not being trained on accessories, the
model handles glasses reasonably well and reconstructs the
headscarf with high fidelity.

A.2. Single-shot 3D Head Avatar Creation

To make Avat3r amenable for inference on only a single in-
put image, we make use of a pre-trained 3D GAN [11] to
first lift the single image to 3D and then render four views
of the head. These renderings then constitute the input for
Avat3r. We conduct comparisons with the recent 3D-aware
portrait animation method GAGAuvatar [1]. Specifically, we
compare with two version of GAGAvatar: One provided by
the authors which is trained on VFHQ [10], and another ver-
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Figure 9. Comparison with FlashAvatar on NeRSemble.

sion, denoted as GAGAvatar', that we train on the Ava256
dataset in the same setting as our method. To drive GAGA-
vatar, we use their monocular FLAME tracker to obtain
tracked meshes. We also compare with another 3D portrait
animation method, Portrait4Dv2 [2], and HeadNeRF [4].
Fig. 10 and Fig. 11 show qualitative comparisons between
our method and the baselines for single input images of hold
out persons. Note that our method performs competitively
compared to the single-input baselines despite never being
trained for a single-shot scenario. We also include a ver-
sion of our model that was trained on a single input image
without DUSt3R. In general, we find that Avat3r produces
more realistic facial expressions than GAGAvatar and Por-
trait4Dv2 which are limited by FLAME’s expression space.
Furthermore, our method allows much more extreme view-
point changes without sacrificing rendering quality. Tab. 3
shows quantitative results. Note that, in contrast to portrait
animation methods like GAGAuvatar and Portrait4Dv2, our
method can benefit when more input views are available
(see Appendix B and tab. 1 in the main paper).

A.3. Comparison with Monocular Methods

We compare with the recent monocular approach FlashA-
vatar and provide it with a full video sequence from
NeRSemble. As shown in Fig. 9, the monocular method
performs well from the training view but fails on novel
views due to overfitting. Please also refer to the Gaussian
Avatar Fusion or HeadGAP papers, which made similar ob-
servations. In contrast, our learned reconstruction prior pro-
duces a plausible 3D head avatar. Quantitative comparisons
are shown in Tab. 3.
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Figure 10. Single-image comparison on Ava256. We compare Avat3r with the recent 3D-aware portrait animation method GAGAvatar [1]
in a self-reenactment scenario on hold-out persons from the Ava256 dataset. GAGavatar” denotes a version of the baseline that we trained
on the Ava256 dataset. Ours' is a version of our model that was trained on only 1 input image (see Appendix B). Our method with 3D
lifting (Ours

3DGANY shows better rendering quality than the baselines, especially for extreme expressions and viewing angles.
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Figure 11. Single-image comparison on NeRSemble. We compare Avat3r with the recent 3D-aware portrait animation methods GAGA-
vatar [1] (GAGavatarT denotes a version of the baseline that we trained on the Ava256 dataset) and Portrait4Dv2 [2] as well as the NeRF-
based face model HeadNeRF [4] in a self-reenactment scenario on persons from the NeRSemble dataset [6] Note that the NeRSemble
dataset has not been used during training and therefore constitutes an evaluation scenario where both source and driver image are out-of-
domain. Ours' is a version of our model that was trained on only 1 input image (see Appendix B). Our method with 3D lifting (Ours*P%AN)
shows better rendering quality than the baselines in these challenging scenarios where input and target view are from opposite sides of the
face.
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Figure 13. Analysis of Data Efficiency. We study how recon-
struction and animation performance behaves when changing the
number of training subjects and input views.
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Figure 14. Effect of Number of Train Subjects. Training on a
larger and more diverse set of people enhances the Avat3r’s gen-
eralization capabilities, as expected. This leads to more accurate
reconstructions, with avatars better matching the identities shown
in the input images. For instance, when dealing with complex
hairstyles, a model trained on a broader range of individuals re-
produces the hairstyle more accurately. All ablations are trained
without LPIPS loss.
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Figure 15. Effect of Number of Input Views. Training with just a
single input image noticeably impairs quality. On the other hand,
using more than 4 input images during training does not lead to
significant improvements. Models are trained without DUSt3R
position maps and without LPIPS loss in the interest of compara-
bility.
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Figure 16. Improved identity preservation by including 984 ad-
ditional identities with neutral expression during training.

B. Analysis of Data Efficiency

B.1. Scaling Subjects and Views from Ava256

In Fig. 13 we show how our model scales with the number
of training subjects and input views available in the Ava256
dataset. For the analysis on the number of input views, we
disable DUSt3R as it produces less reliable position maps
for 2 input views, and cannot be executed at all for 1 input
view. We see a clear improvement when using more training
subjects as well as using more input views. However, fur-
ther scaling the number of input views also has drawbacks,
as it drastically increases runtime due to dense attention in-
side the transformer and the increased number of Gaussians
that have to be rendered. We qualitatively analyze the effect
of using more train subjects in Fig. 14 and the effect of the
number of input views in Fig. 15.

B.2. Effect of Adding More Neutral Subjects

Since Avat3r is only trained on 244 subjects from the
Ava256 dataset, it is at risk of overfitting to those identities
during training time. In our experiments, we observe that
while there is a slight identity shift between the final avatar
and the person in the input images, the expression transfer
works quite well. We therefore hypothesize that for further
improvements on the model’s generalization capabilities it
is not necessary to also add thousands of expressions for
each additional person. To test this, we fine-tune our model
with 984 additional identities from an internal dataset —
just one expression each — adding only 0.08% to the train-
ing data. As shown in Fig. 16 and confirmed by improved
CSIM metrics in Tab. 3, this small addition noticeably im-
proves identity retention for these challenging cases.
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Figure 17. Qualitative Ablation of Skip Connections. Not employing skip connections (a) causes misalignments, blurry renderings, and
a slight color shift. Adding the color skip connection (b) already noticeably improves sharpness and color fidelity. On the other hand, if
the position skip connection is added (c), geometric details are improved but the overall color slightly off. Using both skip connections (d)

yields the best result.

Creation].  Driving?
in [s] in [fps]

HeadNeRF 65 111
Portrait4D-v2 0.2 4
GAGAVatar 0.1 63
GPAvatar 0.2 9.5
Ours' 1.1 53
Ours?POAN 17.9 7.9
Ours 12.3 7.9

Table 4. Runtime analysis. Our method can create a high-quality
avatar in a few seconds, and animate it at interactive rates.

C P PSNRf SSIM{ LPIPS) JOD! AKD] CSIM{

No skip L] O 2139 0.740 0.456 4.99 924 0.60
No pos. skip X [ 21.76 0.746 0.443 5.03 9.04 0.611
No col. skip L] X 21.55 0.745 0.435 5.00 7.69 0.648
Avat3r X X 22.05 0.751 0.421 5.15 7.99 0.689

Table 5. Quantitative Ablation of Skip Connections. We ana-
lyze the effect of the color (C) and position (P) skip connections.
All ablation models are trained without LPIPS loss. Metrics are
computed on 667 x 667 renderings.

C. Inference efficiency & driving speed.

While Avatar creation takes several seconds for our method
due to DuSt3R and Sapiens, we can cache all activations
up to the final cross-attention layers afterwards, leading to
expression driving at 7.9fps for our 4-shot model and 53fps
for our single-shot model, see Tab. 4. Runtimes measured
on a single RTX3090 GPU.

D. Effect of Skip Connections

We analyze the effect of the proposed skip connections, i.e.,
omitting Eq. (11), Eq. (12), or both of the main paper. The
results are listed in Tab. 5. We observe a noticeable hit in
performance when either skip connection is removed. Fur-
thermore, we qualitatively analyze the effect of skip con-
nections in Fig. 17.

E. Training Details

Dataset processing. We use the 4TB version of the
Ava256 dataset [8] which contains 256 persons, 80 cam-
eras, and roughly 5000 frames per person that are sampled
at 7.5 fps. We compute foreground segmentation masks
with BackgroundMattingV2 [7] and replace the background
in all images with black pixels. We use the provided tracked
mesh to find a 512 x 512 head-centered square crop for in-
put images and 667 x 667 head-centered square crop for
supervision views. This ensures that the pixels in the input
images are used efficiently to show as much as possible of
the head, leading to more 3D Gaussians. The reason for also
cropping the target images is to remove parts of the torso,
as it is not the focus of this work.

DUSt3R and Sapiens. Since both DUSt3R [9] and Sapi-
ens [5] are expensive foundation models, we pre-compute
the position and feature maps for the input frames. For
Dust3r, it is prohibitive to pre-compute all possible combi-
nations of 4 input views out of the available 80 cameras. In-
stead, we choose 3 ”reasonable partner views” for each in-
put and only store the position map for that viewpoint. This
assigns each input view exactly one position map, which is
conceptually wrong since the position map from DUSt3R
should depend on the other 3 selected views. Nevertheless,
we did not observe any disadvantages from this simplifica-
tion strategy.
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Figure 18. Performance on NeRSemble dataset. We show reconstructed and animated avatars using 4 images from the NeRSemble
dataset. Note that this dataset was not used during training and contains images with different lighting conditions, viewpoints, and camera

intrinsics than the Ava-256 dataset that was used to train Avat3r.

Hyperparameter Value
= ViT patch size 8§x8
4 hidden dimension D 768
g #self-attention layers 8
= #cross-attention layers 8
> #GRM transformer upsampler step 1
E] Sapiens version 2b
g Sapiens feature dimension 1920
e Input image resolution 512 x 512
H Gaussian attribute map resolution 512 x 512
= Train render resolution 667 x 667
5 Dimension of expression code 256
% & #expression sequence MLP layers 2
§ = Dimension of expression sequence MLP 256
= Expression sequence MLP activation ReLU

Table 6. Hyperparameters.

Head-centric coordinates. We further simplify the task
by factoring the head poses from the provided tracked mesh
into the camera poses instead of letting the network predict
them. That way, our model can always predict the head
in canonical pose, making the task easier. This is possible
because modeling the torso, which in head-centric coordi-
nates moves a lot when the person shakes their head, is not
the focus of this work.

Expression codes. Our architecture is agnostic to the
specific choice of animation signal. For experiments on
ava256, we used the dataset’s expression codes that were
originally predicted by a generalized expression encoder
providing a driving signal beyond FLAME’s topology. For
experiments on NeRSemble and in-the-wild driving videos,
we fine-tuned our model using FLAME codes obtained by
running GAGAvatar’s version of Metrical Tracker [1, 12].
This shows that Avat3r learns a general notion of facial ex-

pressions that can be adapted to fit a specific driving signal.

k-farthest viewpoint sampling. To ensure that the 4 in-
put images always follow a reasonable viewpoint distribu-
tion, we employ k-farthest viewpoint sampling. Specifi-
cally, we first start from a random camera and collect a set
of 10 candidate cameras that are evenly spread out using
farthest point sampling. From this candidate set, we then
randomly select 4 cameras as input. This two-stage ap-
proach ensures that the input cameras are sufficiently ran-
dom during training but also reasonably spread out to avoid
seeing a person only from one side. During sampling input
viewpoints, we exclude cameras that only observe the per-
son from the back since those are not realistic inputs during
test-time.

Input timestep sampling. To improve robustness of our
model, we sample different timesteps for each of the 4 in-
put images. This ensures that the model can deal with in-
consistencies in the input. To maximize the diversity in
the input expressions, we uniformly sample 10 timesteps
in the segments: EXP_eye_wide, EXP_tongue001,
and EXP_jaw003 from the recordings of the Ava256
dataset. This covers the most extreme facial expressions
while avoiding having to pre-compute DUSt3R and Sapi-
ens maps for every single image in the dataset.

Speed. To speed-up training, we employ the 3D Gaussian
Splatting performance improvements of DISTWAR [3].

F. Hyperparameters

In Tab. 6, we list the most important hyperparameters for
training Avat3r.
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