Free-running vs. Synchronous: Single-Photon Lidar for High-flux 3D Imaging

Supplementary Material

A. Derivation of Likelihood Functions
A.1. Ideal Detector

The log likelihood for an ideal detector was previously de-
rived in [2]. We include a derivation here for completeness.
Without dead time, the detector is always armed, and detec-
tion times follow an inhomogeneous Poisson process with
intensity function A(¢) described in (1) in the main docu-
ment. Let (7;) ; denote the sequence of absolute detection
times. Then, following [11, eq. (2.33)], the log likelihood
function is
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where step (a) follows from A(t) = A(¢ mod t,), where
X(t) is the single-period intensity (2) in the main document.
We remark that the log likelihood £'9¢?! is that of absolute
detection times (7)Y, but it can be expressed in terms of
relative detection times {X;} Y ;.

A.2. Synchronous Detector

A synchronous detector detects only the first arriving photon
in a repetition period. According to [11, eq. (2.20)], the
probability density of the first detection time X € [0, ¢,.) is

px(z) = A(z) exp (- /O ’ X(t)dt) )
= A(z) exp(—B(x)). )

The probability that there is a photon detection in a given
repetition period is
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Hence, the conditional probability density of X given that
there is a detection is
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The synchronous detector will be inactive in some repeti-
tion periods when there are carried-over dead times from

previous repetition periods. Suppose there are N| = n, —
Zﬁvzl 1[t,,,—td,t7,)(Xz‘) active repetition periods. Since the
probability of detecting a photon in a given repetition period
is 1 — e, the number of detections N follows a binomial
distribution:

N ~ Binomial(N/,1 — e~ ). (8)

Since the detection times are independent and identically
distributed, the probability density of all detection times is
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The log likelihood conditioned on N7. is therefore

N
—(N, = N)A+ Z log X(XZ) — (I)(Xl) -+ const.
i—1

[£syne —

(14)
The constant does not depend on the parameters of interest
(S, B, and z), so it is dropped for the sake of ML estimation.

A.3. Free-running Detector

The free-running detector is unarmed for {5 whenever it
detects a photon. The absolute detection times follow a self-
exciting point process (SEPP) whose intensity becomes zero
during dead times [11]. We denote the SEPP by {N (¢),t >
0}, where N (t) is the number of detections up to time ¢. The
SEPP’s intensity, which itself is a stochastic process, is
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where T'v(y) is the most recent detection time at time ¢. Ac-
cording to [11, Theorem 6.2.2], the log likelihood of the
absolute detection times (7;)Y_; over the acquisition period
[0, n,t,) is

Nyt N
[iree _ _/ p(t)dt + Z log A\(T;) (16)
0 i=1



Nyt N ~
_ 7/ p@)dt+ > log A(X).  (17)
0

i=1

We approximate the integral:
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In step (a), we replace the indicator function 1 ,, ¢, (Tn +
tq) with one. If the number of detections N is large, then
the approximation will have a relatively small effect on the
integral. Moreover, if the detector is active at t = n,t,,
the indicator function takes the value one, and the ap-
proximation becomes an equality. Step (b) follows from
T, = |T;/t.]t. + T; mod t, and ®(nt,) = nA for any

n € {0,...,n,}. Substituting (23) into (17) completes the
derivation:
N ~
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To write the log likelihood more explicitly in terms of the
unknown parameters, we remark that ®(X;) = ®(X;),
where ®(t) = SF(t — 2z/c) + bt is the single-period cu-
mulative flux defined in Section 3.4. For the other term,
O(X; +tg) = P((X; + tg) mod t,.) + l[tr,oo)(Xi +ta)A,
which can then be written in terms of S, B, and z.

B. Derivation of ML Depth Estimators
B.1. Ideal Detector

The ML depth estimator has been previously shown to be a
log matched filter [2]. We include a derivation of the filter
here for completeness. We rewrite the ideal log likelihood as
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where 7 = 22 /c. Maximizing £14°?! results in

T= argmaleog (Sf(X;

=1

—7)+0b) (26)

—&rgm&leog Sf(r)+b)@d(t—X;) (27
i=1
= argmax log(Sf(7) + b) & Z o —Xi)  (28)

= argmax w(7)  h(7), (29)

T

where & denotes correlation, the term

w(t) :=log(Sf(r) +b) (30)

is the matched filter, and h(t) is defined in (8) in the main
paper.

B.2. Synchronous Detector

We find the time-of-flight 7 maximizing £5Y"¢:
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We recall that the filter w(t) is
u(t) = log(Sf(T) +b) — SF(t). (35)



B.3. Free-running Detector

We first rewrite the approximate free-running log likeli-
hood (24) as

EfreeN nTA+Z/\ ( X +td) modt)

(36)

The terms —n,. A and 1, o) (X; + t4)A do not depend on
T, so they can be dropped for ML depth estimation. To make
the equations concise, we define Y; := (X; + ¢4) mod ¢,.
We maximize this approximate log likelihood with respect
to 7 as follow,
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where the filter v(t) is
o(t) = SF(t). (41)

B.4. Quantization

In practical SPL systems, the detection times are quantized
to a predefined temporal resolution, and the data are stored as
a histogram. Even in simulation, an efficient implementation
of the ML depth estimators uses discrete-time correlation,
which requires quantized detection times. We will show that
the histogram is equivalent to h(¢) defined in (8) of the main
document.

Suppose the period [0,¢,) is partitioned into M his-
togram bins {[mA, (m + 1)A)}MZ}, where the bin size
is A = t./M. Let us consider a set of relative detection
times {X;}Y . Each detection time is assigned to a bin
center:

Xie{(m+1/2)Alme{0,.... M —1}}. (42

We can express {X;}¥ | in terms of the histogram:
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Now, let us consider A(t) in the main paper defined as
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If the detection times are discretized, then
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Attime t = (m’+1/2)A forsome m’ € {0,..., M}, which
is the m’-th bin center of the histogram ha [m], we have

h(t) = 6(t — (m’

This shows that there is a one-to-one correspondence be-
tween h(t) and the histogram ha[m] when {X;} , is quan-
tized according to (42).

Even if {X;}}¥ | is not quantized, we need to compute
the quantized histogram ha [m] with a bin size A in order to
implement the depth estimators efficiently as discrete-time
correlation. For example, the ML estimator of 7 for an ideal
detector is implemented as

+1/2)A)ha[m]. (47)

T=(m"+1/2)A (48)
where m™ = arg max ha[m] @ wa[m] (49)
= arg max Z ha[m/lwa[m’ —m], (50)
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and wa[m] = w((m + 1/2)A) is the discrete-time filter. In
simulation where we have access to { X, }; with floating-
point precision, we may further improve 7 estimate by maxi-
mizing the log likelihood using gradient-based methods.

C. Initializing the ML Estimator

We initialize the alternating maximization algorithm (1) for
ML estimation using the following estimators. For free-
running measurements, we use the estimators for ideal mea-
surements described below in Suppl. C.1.

C.1. Ideal Detector

We use the traditional log matched filtering method [11] to
obtain an initial time-of-flight estimate:

Fideel — arg max h(t) @ log f(7). oD

init
T

Inspired by the Neyman-Pearson censoring estimator [9],
we assume that the detection times in the window of size



twin around Tin;; are mostly due to the signal. In this paper,

we set twin = 4w, where w is the pulse width. Let N

denote the number of detections in this window, i.e., N =
N .
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where we lower bound the signal flux estimate by a small
positive number € > 0 to ensure that arguments of the log
terms in the log likelilhoods are positive. In our simulations
and experiments, we use € = 10~5. We estimate the back-
ground flux as

Hideal N
B = max <
Ny

since N/n,. is an estimate of the total flux A, and A = S+ B.

— Sinit e> : (53)

C.2. Synchronous Detector

We first use Coates’s correction to estimate the photon ar-
rival intensity [4]. Suppose the detection times {X;} | are
quantized into a histogram ha[m] with bin size A. The
Coates-corrected histogram, which is the ML estimate of the
photon arrival intensity [5], for the m'" time bin is

X[m]_log<N T hafm ]>. (54)

N - Zm’:l hA[ ]

Then, we apply the log-matched filter [11] to estimate the
time-of-flight:

s = (m* +1/2)A, (55)
where m* = arg max X[m] @ s[m] (56)
sfm] = log f((m+1/2)4),  (57)

where f(t) is the pulse’s temporal profile. Again, the signal
and background flux estimates follow from censoring of the
estimated photon arrival intensity:

S = max( > X[’f]m) : (58)
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D. Depth Score from Point Cloud Score

In the SSDR algorithm, the depth score o, € R is obtained
by projecting the point cloud score s, € R3 onto the detec-
tor’s line of sight, which is determined by the scan angles
(0p, ¢p). The trained model’s point cloud score approximates
the Stein score, i.e., the gradient of the log density of the
distribution of 3D points [7]. In this section, we show that
o, relates to the Stein score of the depth distribution corre-
sponding to the implicit prior on 3D points in the trained
model.

D.1. From Cartesian to Spherical

X3

Figure 1. Relationship between Cartesian coordinate * =
(21, 22, z3) and spherical coordinate & = (z, 0, ¢).

We first describe the transformation between the Carte-
sian coordinate = (x1, 2, x3) and the spherical coordi-
nate T = (2,6, ¢), where z is the depth from the detector,
assumed to be at the origin. According to Fig. 1,

x1 = zsin @ cos ¢, (60)
T9 = zcosb, 61)
T3 = —zsinfsin ¢. (62)

We denote this transformation by T', i.e., € = T'(x), and the
inverse map by 7~ 1.

D.2. Spherical Coordinate Prior Distribution

Consider a prior distribution of a 3D point in the Cartesian
coordinate with density 7 (x), representing the implicit prior
in the trained point cloud score model for a single point
conditioned on all others. Since £ = T'(x) and T is bijective,
we can compute the density of the distribution of &, denoted
by 7(x), using the change-of-variable formula:

A(&) = m(T~(x))| det Jr-1 (Z)], (63)

where Jp-1 is the Jacobian of T~!. We now compute the
Jacobian:
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The determinant is
det Jp-1 () = 2 sin 6. (66)

Therefore, the density of the point in spherical coordinate is

7(2,0,¢) = w(x1, 20, x3) - 2% sin . (67)



D.3. Deriving the Depth Score

At pixel p, the detector’s line of sight is defined by the scan
angles (6, ¢,). Given a point cloud score in Cartesian co-
ordinate s, = [0log w/0x1,0log m/0xs, Olog w/0x3], the
Stein score of the depth z can be computed from the den-
sity (67) evaluated at these angles:

0 ~ 0 9 . Odlogm
e log (2, 0,, ¢p) = oy log(z~sin6,) + P (68)
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where 7, is the unit vector pointing in the direction of the
scan angles (6, ¢,,). In SSDR, we use only 0, = s, - 7, as
the depth score, since we find that 2/z often dominates the
other term and does not provide good guidance.

E. Additional Simulation Results

E.1. Running time for Free-running Estimators
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Figure 2. (a) Running time of the free-running ML depth estimator
and Rapp et al. [10]’s method with different bin sizes averaged
over 100 Monte Carlo trials. The setting matches that in Figure 2
of the main paper with § = 0.1 and B = 1, but the bin size and
thus the number of bins vary. (b) Running time of free-running and
synchronous ML estimators with the bin size of 0.01 ns, i.e., 10000
bins as ¢, = 100 ns.

We provide additional results regarding the running time
of depth estimator for the free-running mode. Rapp et al.
[10]’s method requires computing the stationary distribution
of the relative detection times, which involve an expensive
eigenvector computation. In contrast, the proposed ML depth
estimator for the free-running mode can be implemented ef-
ficiently as matched filtering. Both methods operate on the
histogram. However, the running time of Rapp et al. [10]’s
method scales poorly with the number of time bins, as shown
in Fig. 2a. At 10000 bins, the ML estimator takes 2.84 ms

on average, while Rapp et al. [10]’s method takes 14.3 s, or
approximately 5000x that of the ML estimator. Additionally,
the ML estimator allows continuous refinement by maxi-
mizing the log likelihood with gradient-based optimization
if we have access to detection times with higher numerical
precision.

In Fig. 2b, we compare free-running and synchronous
ML depth estimators under the same scene parameters and
number of time bins. Both estimators are matched filters with
access to ground truth S and B. Although the free-running
ML estimator is slower, it is still computationally efficient,
taking only 1.8 us for 10000 time bins.

E.2. Hyperparameter Tuning for SSDR

SSDR has four hyperparameters: the depth score thresholds
for iterative updates (¢) and median smoothing (€jpit), the
step size (), and the regularization weight («). We tune
them using the Optuna package [1] with the Tree-structured
Parzen Estimator [3], minimizing the RMSE of z estimates
over 200 SSDR iterations for 100 hyperparameter samples.
The tuning dataset is the free-running measurement of the
“Mario” scene in Fig. 3, yielding the reported hyperparame-
ters.

E.3. Additional 3D Imaging Results

The simulated 3D imaging results in Fig. 3 extend the main
paper by including reconstructions from ideal measurements,
SSDR-regularized results for ideal and synchronous mea-
surements, and additional error metrics such as the RMSE of
background flux estimates and the RMSE of depth estimates.

For pixel-wise ML estimates, free-running measurements
consistently outperform synchronous ones in estimating S,
B, and z, while ideal measurements provide the most accu-
rate results. However, for SSDR-regularized reconstructions,
the trend is less clear. In the “Man” and “Mario” scenes, both
MAE(Z, z) and RMSE(Z, z) are higher for free-running than
for synchronous measurements, despite significant improve-
ment from pixel-wise ML estimates. We attribute this to
randomness in the SSDR algorithm.

E.4. Ablation Study for SSDR

For the ablation study, we remove three key features from
SSDR—one at a time: median smoothing for initialization,
depth score hard-thresholding, and noise in the iterative up-
date (turning it into standard gradient descent). Hyperparam-
eters remain the same as in the main paper. Fig. 4 shows
the RMSE of depth estimates at each SSDR iteration with
and without each component. The tested scenes (“Duck,”
“Man,” and “Mario”) and measurement types (“Ideal,” “Syn-
chronous,” and “Free-running”) match those in Fig. 3.
Depth score thresholding has the greatest impact on
RMSE reduction; without it, RMSE increases over iterations.
Median smoothing is the next most influential—without it,
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Figure 3. Reconstructions from simulated SPL. measurements using pixel-wise ML estimators for (a) ideal, (b) synchronous, and (c)
free-running measurements. Depth-regularized SSDR reconstructions are shown in (d), (e), and (f). Point color represents the signal flux
estimate, while red points indicate those projected onto the plotting space due to axis limits. Error statistics, including RMSEs of signal flux,
background flux, and depth estimates, as well as the mean absolute error (MAE) of depth estimates, are provided beneath each reconstruction.

RMSE initially decreases but then plateaus, likely due to
local optima in the log-posterior density. The iterative up-
date noise has the least effect on final RMSEs, though in
some cases (e.g., “Mario” scene with ideal measurements), it
helps avoid local optima, leading to improved results. SSDR,
following the Plug-and-Play Monte Carlo framework [12],
also enables uncertainty quantification through multiple re-
construction samples.

E.S. SPL Regularization Comparison

We compare the performance of the proposed SSDR algo-
rithm to ManiPoP, a Bayesian approach to SPL regulariza-
tion [14], for ideal measurements. While ManiPoP can pro-

vide more accurate reconstruction and reduce outlier points,
it can introduce structured artifacts and distort the point
cloud’s shape.

In Fig. 5, the scene consists of the “Duck” model from
the Greyc 3D Colored Mesh Database [8] with an added
back pane. The detector raster scans a 99x99 grid, using
SPL settings identical to Section 4.4 of the main paper, with
signal flux scaled to a maximum of 0.1. SSDR slightly re-
duces depth errors from the pixel-wise ML reconstruction
but retains some outlier points. We remark that the score
model is trained on point clouds of isolated 3D models [7],
so scenes with targets at different depths can be challeng-
ing. ManiPoP achieves lower depth MAE but higher RMSE
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Figure 4. Ablation study: Depth RMSE per iteration of the SSDR algorithm under four conditions: (1) full SSDR algorithm, (2) without
median smoothing, (3) without hard-thresholding the depth score, and (4) using noiseless iterative updates (i.e., standard gradient descent).
Results are shown for ideal, synchronous, and free-running measurements across the three scenes from Fig. 3.
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Figure 5. Comparison between SSDR and ManiPoP [14]: ManiPoP produces smoother reconstructions with lower error and regularizes
signal flux estimates. However, it introduces distortions, evident in the duck’s bill in the zoomed-in depth maps and depth underestimation at
boundary between the duck and the background pane.
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Figure 6. Comparison between SSDR and ManiPoP [14] without a
back pane: ManiPoP can introduce large distortions. In this case, it
discards regions with low signal flux and warping the shape of the
remaining structure.

due to artifacts, including severe depth underestimation in a
row at the bottom of the scene. The zoomed-in depth map re-
veals shape distortions in ManiPoP’s reconstruction, whereas
SSDR preserves structure more faithfully.

ManiPoP supports multi-depth imaging, detecting
whether a pixel contains one or multiple targets. However,
this can be a disadvantage, as shown in Fig. 6. In a scene
without a back pane, ManiPoP eliminates the duck’s head
due to its lower signal flux, also distorting the remaining
structure. Finally, we remark that the derived log likelihoods
for synchronous and free-running modes can be integrated
into regularization methods such as TV regularization [6],
ManiPoP [14] and RT3D [13] to made them applicable to
these detector modes.

F. Additional Experimental Details

F.1. Experimental Setup

The setup includes a pulsed laser (PicoQuant LDH-P-C-640-
B) operating at 10 MHz, resulting in 100 ns repetition period,
and 231 ps pulse width. The laser is raster-scanned over a
64 x 64 grid using a Thorlabs GVS 202 galvo system. A
FastGatedSPAD (Micro Photon Devices) detects photons at
an avalanche threshold of 16 mV and bias current of 50 mA.

In synchronous mode, the SPAD gate remains open for
ton = 601ns in each repetition period, with an 81 ns hold-off
time ensuring at most one detection per period. This slightly
modifies the detection model, treating ¢, as the effective
period in ML estimation while using the full 100 ns repeti-
tion period to count active repetitions V. In free-running
mode, the dead time is 48 ns. The SPAD output is recorded
by a Swabian Instruments Time Tagger Ultra with a 4 ps bin
width over a 10 ms acquisition time per pixel. Two objects
at approximately 2.4 m depth are measured with tunable am-
bient light levels using two LED lamps. For the low-flux
setting, both LED lamps and the room light are turned off.
For high-flux synchronous and free-running acquisition, both
LED lamps are turned on, although the room light is still off.

Figure 7. The experimental setup for acquiring SPL measurements.
All lights are turned off for the low-flux setting. The two lamps
are turned on while the room light is off for the synchronous and
free-running high-flux settings.

F.2. Additional Experimental Results

Fig. 8 shows additional 3D reconstructions from experiments.
We introduce another scene and include background flux es-
timates, along with statistics such as the average background
flux estimate and the MAE of depth estimates. Reconstruc-
tions from low-flux measurements serve as the reference for
computing signal flux and depth errors.

Consistent with simulation trends, free-running measure-
ments yield more accurate signal flux and depth estimates.
In contrast, synchronous mode fails to reconstruct the scene,
as pile-up causes depth underestimation, resulting in a point
cloud near the detector. For the “Mannequin” scene, SSDR
reduces MAE of depth estimates by 28%. Background es-
timates for high-flux measurements remain uniform across
pixels, as expected, while in low-flux measurements, they
correlate with signal flux estimates due to laser multiple
scattering. In the “Dog” scene, low reflectivity in dark re-
gions makes estimation difficult, even in low-flux conditions.
Both synchronous and free-running high-flux estimates re-
main unreliable in those regions. For low-flux measurements,
some estimated points on the Dog’s dark regions appear on
the cardboard, because the laser spot has a finite size and it
partially illuminates the more reflective cardboard.
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Figure 8. Additional 3D reconstruction results from experimentally collected SPL measurements. We include an additional scene and provide

background flux estimates for each pixel, along with extra statistics such as the average background flux estimate and the MAE of depth
estimates. Low-flux estimates serve as the ground truth for error computation.
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