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Appendix
The appendix is organized into the following sections:
• Appendix A: Dataset Details

– A.1 Text-Video Retrieval
– A.2 Comprehensive Multi-Modal Understanding

• Appendix B: Implementation Details
• Appendix C: Inference Details of BLiM
• Appendix D: Proof of Proposition 1
• Appendix E: Further Discussion on CPN

– E.1 Alleviation of Candidate Prior Bias
– E.2 CPN Decoding in Visual Captioning
– E.3 Analysis on Text Candidate Prior
– E.4 Discussion on Computational Cost

• Appendix F: Further Quantitative Results
– F.1 Results on Multi-Text Retrieval Settings
– F.2 Sensitivity Study of α in CPN
– F.3 Results on Bidirectional Likelihood Estimation
– F.4 Results on Candidate Prior Normalization

• Appendix G: Further Qualitative Results
– G.1 Results on Bidirectional Likelihood Estimation
– G.2 Results on Candidate Prior Normalization
– G.3 Results on Instruction-based Retrieval

A. Dataset Details

A.1. Text-Video Retrieval
DiDeMo [1]. Distinct Describable Moments (DiDeMo)
contains 10K videos which are divided into 5-second seg-
ments. It has a total of 26K moments whose descriptions are
detailed and contain camera movement, temporal transition
indicators, and activities. We follow the previous works [2–
7] by concatenating all captions of one video and solving
the task as a paragraph-video retrieval task. The number of
training and test samples is 8,394 and 1,003, respectively.
ActivityNet [8]. ActivityNet dataset contains 19K videos
from YouTube, which are categorized into 200 different

∗ Equal contribution. † Corresponding authors.

types of activities. On average, each category has 137
videos and each video has 1.41 activities which are an-
notated with temporal boundaries. Similar to DiDeMo,
we also concatenate all the captions of a video to form a
paragraph-video retrieval task on the ‘val1’ split by follow-
ing [4, 6, 7, 9, 10]. Therefore, the number of training and
test samples is 10,009 and 4,917, respectively.
LSMDC [11]. Large Scale Movie Description Challenge
(LSMDC) contains 118K short video clips from 202 movies
with captions from the movie script or from transcribed
DVS (descriptive video services) for the visually impaired.
Our model is trained with 101,055 videos and evaluated on
1,000 videos.
MSRVTT [12]. Microsoft Research Video to Text
(MSRVTT) contains 10K video clips from 20 categories,
with each video clip annotated with 20 sentences. There
are 29K unique words in all captions. Following the litera-
ture [4–7, 10, 13, 14], we train our model with 9,000 × 20
training samples and 1,000 test samples.

A.2. Comprehensive Multi-Modal Understanding

MME [15]. Multi-modal large language Model Evaluation
benchmark (MME) is composed of 14 subtasks where all
the samples are manually annotated. MME targets to as-
sess MLLMs’ perception and cognition abilities including
OCR, existence of objects, commonsense reasoning, nu-
merical calculation, code reasoning, etc.
MMBench [16]. MMBench is a bilingual benchmark to
evaluate the MLLMs’ multi-modal understanding abilities.
This benchmark includes multiple-choice questions across
the 20 ability dimensions like spatial relationship, physical
property, attribute recognition, object localization, etc.
SeedBench [17]. SeedBench aims at a comprehensive as-
sessment of generative models and contains 19K manually
annotated multiple-choice questions across the 12 ability di-
mensions both on the image and video domain. The ques-
tions cover both spatial and temporal understanding like
scene understanding, action prediction, procedure under-
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standing, etc.
MVBench [18]. Multi-modal Video understanding Bench-
mark (MVBench) consists of 20 challenging video under-
standing tasks that can effectively assess the ability to com-
prehend temporal evolution in dynamic videos. It consists
of 9 main tasks for spatial understanding, which are then
further split into a total of 20 tasks for temporal understand-
ing.
VideoMME [19]. Multi-Modal Evaluation benchmark of
MLLMs in Video analysis (VideoMME) evaluates the abil-
ity of MLLMs to handle sequential visual data on 6 primary
visual domains with 30 subcategories. The videos are cat-
egorized as short, medium, and long, ranging from 11 sec-
onds to 1 hour. A total of 900 videos are in the benchmark
with 2,700 questions.
MLVU [20]. Multi-task Long Video Understanding bench-
mark (MLVU) targets to assess long video understanding
performance spanning 7 video genres including movies,
egocentric videos, cartoons, etc. MLVU contains 2,593
questions on 9 categories like topic reasoning, plot question
answering, action count, ego reasoning, etc.
NExT-QA [21]. NExT-QA is a video question answer-
ing task aiming to evaluate causal action reasoning, tem-
poral action reasoning, and common scene comprehension.
This dataset includes 47,692 multiple-choice questions and
52,044 open-ended questions on a total of 5,440 videos.

B. Implementation Details

BLiM details. Our BLiM is built upon VideoChat-
Flash [18] and is further fine-tuned on each Text-Video Re-
trieval dataset. Specifically, VideoChat-Flash consists of a
video encoder, a linear projection layer, and a LLM. The
visual encoder and LLM are initialized with UMT-L [7]
and Qwen2 [22], respectively. We freeze parameters in
the video encoder and LLM, and only update parameters in
the linear projection layer and LoRA for parameter-efficient
fine-tuning, resulting in 10M trainable parameters among
7B total parameters (8%). We accumulate gradients from
P (t|v) and P (v|t), and update the trainable parameters at
once.
Experimental settings. The self-attention mechanism in
our model is implemented under FlashAttention2 [23] and
we sample 16 frames per video for all datasets. These 16
frames are divided into four clips with four frames each.
The learning rate is 2e-4 for DiDeMo and 1e-4 for Activi-
tyNet, LSMDC, and MSRVTT with AdamW optimizer. We
train our model on 8 × A6000 GPUs with a batch size of
32, 32, 256, and 512 for DiDeMo, ActivityNet, LSMDC,
and MSRVTT, respectively. For inference, we select the
top-16 candidates according to the similarity from Intern-
Video2 1B [24] and rerank them by leveraging bidirectional
likelihoods. More details are summarized in Tab. 1.

DiDeMo ActivityNet LSMDC MSRVTT

optimizer AdamW
optimizer momentum β1 = 0.9, β2 = 0.95
weight decay 1.0
warmup epochs 1
input frames 16

α for Pα(t|v) 0.8 0.9 1.0 0.9
α for Pα(v|t) 0.0 0.2 0.2 0.0
total epochs 5 5 3 3
learning rate 2e-4 1e-4 1e-4 1e-4
batch size 32 32 256 512

Table 1. Experimental settings in Text-Video Retrieval.

C. Inference Details of BLiM

In inference, BLiM calculates candidate and query likeli-
hood, and ensembles them for final prediction. Fig. 1a and
1b illustrate the inference procedure of video-to-text and
text-to-video retrieval, respectively. For example, on can-
didate likelihood estimation in Fig. 1a (left) and 1b (left),
we fix the input of the model as a video (or text) query and
seek the best text (or video) content by replacing the output
with text (or video) candidates. On the other hand, on query
likelihood estimation in Fig. 1a (right) and 1b (right), we fix
the output of the model as a text (or video) query and seek
the best video (or text) content by replacing the input with
video (or text) candidates.

D. Proof of Proposition 1

Proposition 1. Let P (t(m)|v(m)) denote the candidate like-
lihood for retrieving the most relevant text t(m) given a
query video v(m). Suppose that:

1. The query likelihood correctly ranks t(m) over any neg-
ative sample t(n) and the gap is bounded as:

0 < logP (v(m)|t(m))− logP (v(m)|t(n)) < ε. (1)

2. There exists a text candidate t(n) with a larger prior
probability gap:

logP (t(n))− logP (t(m)) > cε, for some c > 1. (2)

Then, the candidate likelihood ranking is reversed:

P (t(m)|v(m)) < P (t(n)|v(m)). (3)

Proof. The candidate likelihood cap between t(m) and t(n)
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Figure 1. Inference details of BLiM in (a) video-to-text and (b) text-to-video retrievals.
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(a) w/o CPN in video-to-text.
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(b) w/ CPN in video-to-text.
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(c) w/o CPN in text-to-video.
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(d) w/ CPN in text-to-video.

Figure 2. Visualization of retrieval results on the candidate likelihood estimation w/ and w/o CPN. 50 text-video pairs are sampled to
avoid visual clutter.

given the video query v(m) is written as:

logP (t(m)|v(m))− logP (t(n)|v(m)) (4)

= logP (v(m)|t(m)) + logP (t(m))

− logP (v(m)|t(n))− logP (t(n)) (by Bayes’ Rule)
(5)

< ε+ logP (t(m))− logP (t(n)) (by Eq. (1)) (6)
< ε− cε = ε(1− c) (by Eq. (2)) (7)
< 0. (by c > 1) (8)

Therefore, P (t(m)|v(m)) < P (t(n)|v(m)).

This proposition indicates that the candidate likelihood
ranking is reversed, leading to the retrieval of an incorrect
candidate, although the query likelihood identifies the accu-
rate candidate in Eq. (1). The inaccurate relevance predic-
tion arises due to a substantial gap in candidate prior prob-

abilities, as shown in Eq. (2). This motivates us to jointly
consider query and candidate likelihood (i.e., Bidirectional
Likelihood Estimation) along with CPN to mitigate bias to-
wards candidate prior probability.

E. Further Discussion on CPN
E.1. Alleviation of Candidate Prior Bias
To verify the alleviation of candidate prior bias, we provide
heatmaps in Fig. 2 w/ and w/o CPN on the candidate likeli-
hood estimation. For example, in video-to-text retrieval, the
candidate likelihood estimation w/o CPN demonstrates sub-
optimal retrieval results since the text with the highest prior
probability, i.e., the 24th text, is retrieved for most videos.
On the other hand, the candidate likelihood w/ CPN leads to
a balanced prediction where each text is retrieved for its own
paired video in Fig. 2b. This reveals that CPN successfully
alleviates candidate prior bias and encourages the model



COCO NoCaps LLaVA-Wild YouCook2 VDC TemporalBench

LLaVA-Onevision [25] 140.5 87.7 83.2 19.0 2.5 36.1
LLaVA-Onevision† (Ours) 142.1 89.9 84.1 22.4 3.0 37.6

Table 2. Results on visual captioning. We report CIDEr
for COCO, NoCaps, and YouCook2, and average GPT score
for LLaVA-Wild and VideoDetailCaption (VDC). The Temporal-
Bench score is reported for TemporalBench, which is based on the
embedding similarity.

to consider text-video correspondences more. Furthermore,
candidate prior bias is more pronounced in video-to-text re-
trieval due to the high reliance of MLLMs on LLMs’ pre-
trained knowledge. This becomes evident when compar-
ing Fig. 2a and Fig. 2c, a clear vertical line is observed on
video-to-text retrieval in Fig. 2a.

E.2. CPN Decoding in Visual Captioning

Tab. 2 demonstrates the quantitative results of CPN de-
coding to visual captioning. We apply CPN decoding to
LLaVA-Onevision [25] and evaluate its performance on six
benchmarks (COCO [26], NoCaps [27], LLaVA-Wild [28],
YouCook2 [29], VideoDetailCaption [30], and Temporal-
Bench [31]) covering both image and video captioning
tasks. Our results show that CPN decoding consistently en-
hances performance across all datasets, underscoring its ef-
fectiveness in visual captioning.

To show how CPN decoding improves the performance
in visual captioning, we provide qualitative results in Fig. 3
by applying CPN decoding to VideoChat2 [18]. The stan-
dard VideoChat2 usually generates a hallucinated text by
overlooking the visual content. For example, in Fig. 3a,
the word ‘apple’ is hallucinated which does not appear in
the video. Similarly, in Fig. 3b, the standard VideoChat2
also generates a hallucinated phrase “They are trimming the
dog’s nails” while the dog licks his feet in the video. How-
ever, with our CPN decoding (denoted as VideoChat2†), the
hallucinated text is successfully removed by encouraging
the model to take into account visual contents more.

E.3. Analysis on Text Candidate Prior

We visualize the correlation between text candidate prior
probabilities and text lengths in Fig. 4a, as well as the cor-
relation between text candidate prior probabilities and the
number of repetitive phrases in Fig. 4b. Interestingly, both
text length and the number of repetitive phrases increase
as the text candidate prior probability increases. Using the
Pearson Correlation Coefficient [32], we find that the cor-
relation in Fig. 4a is 0.97, and that in Fig. 4b is 0.93, in-
dicating a strong relationship between text candidate prior
probabilities and these linguistic properties.

E.4. Dicussion on Computational Cost
Finally, Tab. 3 demonstrates the additional inference time
overhead of CPN decoding on the benchmarks in Tab. 5 of
the main paper. Since these benchmarks consist of multi-
choice questions, the number of newly generated tokens by
the model is less than 10 tokens. This implies that CPN
decoding introduces only a marginal increase in inference
time. In Tab. 3, the average performance is improved by
16.3 while the additional inference time is only increased
by 4.9%. On the other hand, the inference time might be
increased if the number of newly generated tokens becomes
large.

F. Further Quantitative Results
F.1. Results on Multi-Text Retrieval Settings
Tab. 4 demonstrates the result of BLiM in multi-text Text-
Video Retrieval on MSVD [33] and VATEX [34]. In text-
to-video retrieval on VATEX, BLiM surpasses InternVideo2
6B by 2.7. Consequently, BLiM achieves a new state-of-
the-art performance in 3 out of 4 settings.

F.2. Sensitivity Study of α in CPN
Fig. 5 presents the video-to-text retrieval performance
across various values of α in CPN (Eq. (8) of the main
paper). α = 0 indicates that CPN is not applied to the pre-
diction. Our findings reveal that an α range from 0.8 to 1.0
consistently yields the best performance across all datasets.
This highlights the importance of mitigating the influence
of candidate priors in candidate likelihood through the ap-
plication of CPN.

F.3. Results on Bidirectional Likelihood Estimation
In Tab. 5, we provide detailed results on bidirectional like-
lihood estimation. In text-to-video retrieval, R@1 is im-
proved by 40.1, 40.2, 26.1, and 24.3 increase on DiDeMo,
ActivityNet, LSMDC, and MSRVTT, respectively. Simi-
larly, by reducing the effect of text candidate prior in video-
to-text retrieval, a dramatic performance gain is observed in
query likelihood estimation, with R@1 increasing by 36.0,
40.8, 22.8, and 35.7 on each dataset. Finally, bidirectional
likelihood estimation (BLE) further enhances performance
beyond query likelihood estimation, especially in video-to-
text retrieval.

F.4. Results on Candidate Prior Normalization
Tab. 6 demonstrates detailed results on CPN. First, in video-
to-text retrieval, we observe a substantial performance im-
provement after applying CPN to candidate likelihood es-
timation, with R@1 gains of 49.6, 33.1, 23.8, and 35.8 on
each dataset. We hypothesize that candidate prior bias is
more pronounced in textual candidates, i.e., video-to-text
retrieval, due to the powerful LLM’s pretrained knowledge



VideoChat2 caption: A little girl peels an apple with
an apple peeler. She cuts the apple into slices. She
holds a slice up to show the camera.

VideoChat2† caption: A young girl peels potatoes
on a cutting board behind a counter. The girl moves
the potato across the board to get at the skin to peel it
off. The girl then repeats the process to get the potato
completely clean.

(a)

VideoChat2 caption: A person is holding a little dog.
They are trimming the dog’s nails. The dog gets up 
and pants a lot.

VideoChat2† caption: A person is holding a little
dog in their hands. The dog licks his feet while the
person continues to hold him.

(b)

Figure 3. Qualitative results of CPN decoding in video captioning on ActivityNet. † stands for the model with CPN decoding. The
hallucinated text is highlighted in red.

Model MME MMBench MVBench VideoMME MLVU NExT-QA SeedBench avg. ∆

VideoChat2 [18] 1505.7 (1.5) 63.9 (1.2) 60.1 (2.4) 42.2 (4.1) 45.8 (6.9) 78.9 (1.4) 61.2 (0.9) -
VideoChat2† (Ours) 1607.0 (2.0) 66.2 (1.2) 62.3 (2.4) 47.1 (4.1) 48.5 (7.1) 79.4 (1.5) 61.7 (1.0) +16.3 (+4.9%)

Table 3. Inference time comparison of CPN decoding. The inference time (seconds per sample) is reported in parentheses. † stands for
the model with CPN decoding.
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(a) Prior vs Text Lengths.
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(b) Prior vs Repetitive Phrases.

Figure 4. Visualization of the correlation between (a) prior proba-
bilities and text length and (b) prior probabilities and the number
of repetitive phrases. The texts are sorted in ascending order based
on prior probabilities.

Cap4Video [5] UMT [7] InternVideo2 6B [24] BLiM

MSVD T2V 51.8 58.2 61.4 63.2
V2T - 82.4 85.2 85.7

VATEX T2V 66.6 72.0 75.5 78.2
V2T - 86.0 89.3 83.9

Table 4. Results on multi-text Text-Video Retrieval. We only
report R@1 both in text-to-video (T2V) and video-to-text (V2T)
retrieval.

in MLLM. On the other hand, the performance gain is rela-
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Figure 5. Video-to-text retrieval performance on various α.

tively marginal in text-to-video retrieval since video repre-
sentations are inherently less influenced by LLM’s knowl-
edge. Overall, incorporating CPN leads to an average R@1
improvement of 8.5 in bidirectional likelihood estimation.

G. Further Qualitative Results

G.1. Results on Bidirectional Likelihood Estimation
In Fig. 6, we provide additional qualitative results on bidi-
rectional likelihood estimation for both video-to-text and



Bidirectional Likelihood Estimation:

Last view of ocean. We first see water in the full screen. A
woman in white sits on a bench.

Candidate Likelihood Estimation:

A fish swims down. A yellow fish swims into the picture. A
yellow fish swims in front of the camera. A scuba diver swims
around a reef.

Text candidate prior 𝑷(𝒕) RANK-982

Text candidate prior 𝑷(𝒕) RANK-2

(a) Video-to-Text Retrieval.

Bidirectional Likelihood Estimation:

Video candidate prior 𝑷(𝒕) RANK-815

Camera turns around and almost walks into pole. When the
church first comes into view. Shaky camera catches cop that
passes by in street.

Candidate Likelihood Estimation:

Video candidate prior 𝑷(𝒕) RANK-7

(b) Text-to-Video Retrieval.

Figure 6. Qualitative results of the bidirectional likelihood estimation in (a) video-to-text and (b) text-to-video retrieval.

DiDeMo ActivtyNet LSMDC MSRVTT
T2V V2T T2V V2T T2V V2T T2V V2T

CLE 45.1 23.7 39.8 18.2 27.7 10.7 38.5 14.2
QLE 85.2 59.7 80.0 59.0 53.8 33.5 62.8 49.9
BLE (CLE + QLE) 85.9 62.2 80.0 59.7 53.8 34.9 62.8 50.6

Table 5. Ablation study on bidirectional likelihood estimation.
We compare the performance of each likelihood estimation: can-
didate likelihood estimation (CLE), query likelihood estimation
(QLE), and bidirectional likelihood estimation (BLE). We exclude
CPN in this experiment.

CPN DiDeMo ActivityNet LSMDC MSRVTT
T2V V2T T2V V2T T2V V2T T2V V2T

CLE ✘ 45.1 23.7 39.8 18.2 27.7 10.7 38.5 14.2
CLE ✔ 45.1 73.3 41.3 51.3 28.9 34.5 38.5 50.0

BLE ✘ 85.9 62.2 80.0 59.7 53.8 34.9 62.8 50.6
BLE ✔ 85.9 76.7 80.0 67.4 53.8 41.3 62.8 55.8

Table 6. Ablation study on CPN.

text-to-video retrieval. We observe that candidate likeli-
hood estimation tends to favor text and video candidates
with high prior probability (ranked 2nd and 7th out of
1,003 candidates) on video-to-text (Fig. 6a) and text-to-
video (Fig. 6b) retrieval, respectively. Interestingly, the
high-prior text candidate contains repetitive phrases due to
the autoregressive property of the LLM [35]. Likewise, the
high-prior video candidate consists of static scenes, while
the ground-truth video exhibits richer temporal dynamics.
However, our bidirectional likelihood estimation success-
fully retrieves the correct text and video in both tasks. These
results demonstrate that candidate prior bias can lead to in-
accurate retrieval, while our method effectively mitigates

this bias, resulting in improved retrieval performance.

G.2. Results on Candidate Prior Normalization
We provide further qualitative results of CPN decoding in
Fig. 7 and identify a bias towards frequent co-occurrence.
The VideoChat2 w/o video model prioritizes the likely ac-
tion sequence “(B) Took the cup/glass/bottle” in response
to the question “What happened after the person held the
dish?”, based on the frequent co-occurrence derived from
the LLM’s pretrained knowledge. Consequently, the stan-
dard VideoChat2’s high dependence on incorrect text priors
leads to inaccurate outputs, whereas our CPN decoding ef-
fectively reduces this bias by leading the model to focus
more on visual information.

G.3. Results on Instruction-based Retrieval
In this section, we explore the MLLMs’ versatility in the
human instruction-based retrieval task. We note that the
benchmark for human instruction-based retrieval is not yet
studied, so we customize ReXTime [36], originally released
for the moment-retrieval task, adequately to our setting
and we provide qualitative results on several examples. In
Fig. 8, we mainly ask the model to retrieve a certain part
of the video and the answer given the video and question,
i.e., multi-modal queries and multi-modal contents. Specifi-
cally, in Fig. 8a, the user asks to retrieve the answer and the
relevant part of the video to “What does the man do after
walking the tube back?”. Our BLiM successfully retrieves
the relevant part of the video including the 3rd, 4th, and
5th frames along with the text “The man goes up the tow
rope.”, as the action “walking the tube back” occurs in the
3rd frame. This retrieved video includes the action where
the man goes up the tow rope. Furthermore, we ask two



What happened after the person held the dish?
(A) Took the book.
(B) Took the cup/glass/bottle
(C) Took the blanket.
(D) Closed the closet/cabinet. (VideoChat2†; Ours)

 (VideoChat2,
VideoChat2 w/o video)

Figure 7. A qualitative example of CPN decoding on MVBench.
Green signifies the accurate prediction, while red denotes the in-
correct prediction. † indicates the model with CPN decoding.

different questions with the same video in Fig. 8b and 8c.
Our model retrieves the relevant part of the video and the
answer well by following the instructions. In Fig. 8b, the
scene of gaining momentum for throwing the javelin and
the text “To gain momentum for throwing the javelin off
into the distance.” are retrieved given the question “Why
does the person begin running down the track?” and the full
video. Interestingly, as the question is changed to “How
does the person throw the javelin off into the distance?”,
the retrieved scene and text are changed to the content de-
picting “running down the track”. Overall, integrating the
retrieval task into MLLMs enables them to handle complex
human instruction-based retrieval in the real-world chatting
system.
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