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5. Softmax Representation

Softmax is derived from the optimization of

min
ω

1

ω

C∑

c=1

εc logεc →
C∑

c=1

εczc, (16)

s.t.
C∑

c=1

εc = 1, (17)

εc ↑ 0↓c ↔ {1, · · · , C}, (18)

as follows.
By introducing Lagrange multipliers ϑ and {ϖc}Cc=1 for

the constraints (17, 18), the above optimization leads to

L =
1

ω

∑

c

εc logεc→
∑

c

εczc+ϑ(
∑

c

εc→1)→
∑

c

ϖcεc,

(19)
which produces the following derivatives and KKT condi-
tions;

ϱL

ϱεc
=

1

ω
(logεc + 1)→ zc + ϑ→ ϖc = 0, (20)

ϱL

ϱϑ
=

∑

c

εc → 1 = 0, (21)

KKT: εc ↑ 0, ϖc ↑ 0, ϖcεc = 0, ↓c. (22)

From (20), we can derive

εc = exp(ω(zc → ϑ+ ϖc)→ 1) > 0, (23)

which is also accompanied by ϖc = 0 in (22). On the other
hand, ϑ can be determined so that (21) holds, finally result-
ing in the optimizer of softmax representation as

εc =
exp(ωzc)∑
k exp(ωzk)

. (24)

5.1. Connection to Least-square approach

As shown in (8), the least-square representation is written
in

min
ω→!

1

2
ω↑W̃↑W̃ω→

∑

c

εczc. (25)

In the case that the classifiers are less correlated, implying
W̃↑W̃ ↗ I (identity matrix) such as after sufficient train-
ing, (25) is further reduced to

min
ω→!

1

2

∑

c

ε2
c →

∑

c

εczc. (26)

Compared to (16), only difference is found in the first term
which injects regularization about sparsity; that is, nega-
tive entropy and L2-norm are introduced for (moderately)
smoothing the coefficients ω in the minimization of (16)
and (26), respectively. This analogy is a theoretical moti-
vation to regard the softmax representation (9) as an (ap-
proximated) ω-parameterized optimizer for the least-square
problem (25).

6. Analysis about ω

6.1. Characteristics

As the least-square formulation (8) is equivalent to one-
class SVM [47], it produces sparse coefficients ω which
contain a few numbers of non-zero elements corresponding
to support vectors. It accordingly demands the softmax (9)
to be also sparse as an approximation of ω (Section 5).

When the feature vector x̃ is apart from the classifiers
especially at an early stage of training, the logits are quite
small; we can empirically observe that maxc |zc| = ς ↘ 1
for the immature features. For ease of discussion, suppose
that we have m-prominent logits of zc→ = ς and the other
logits are zeros. As describe above, it is necessary to convert
the less discriminative logits to m-sparse softmax of

p(z) =
[1→ φ

m
, · · · , 1→ φ

m︸ ︷︷ ︸
m

,
φ

C →m
, · · · , φ

C →m︸ ︷︷ ︸
C↓m

]
, (27)

with small fraction φ ↘ 1. It is achieved by setting ω as

p(zc→) =
1→ φ

m
=

exp(ως)

m exp(ως) + (C →m)
(28)

≃ ω =
1

ς
[log

1→ φ

φ
+ log

C →m

m
] ⇐ 1. (29)

Thus, as shown in Figure 1, the LS-optimized ω↔ is larger
for immature features at early training epochs; Figure 5
demonstrates an empirical case for the feature at the 1st
epoch which renders ω↔ = 102 in our LS method. Then,
as the training proceeds, the feature vector x̃ approaches
the classifier w̃y , producing discriminative logits with an
enlarged ς to reduce ω in constructing sparse softmax.

6.2. Number of classes

Our method adaptively copes with various number of
classes, C. Figure 6 summarizes the optimized ω↔ over
various C on diverse datasets. It is noteworthy that our
method optimizes ω based on a feature representation and
the number of classifiers (C), and generally speaking, the



Table 8. Training parameters.

Table 2 Table 4b Table 5 Table 6 Table 7

Cifar-10/100 Food-101/ImageNet Fine-tuning Cosify MS1M-RetinaFace ImageNet-LT/iNat2018/Places-LT

Epochs 240 100 60 30 25 100 (1st) / 30 (2nd)
Learning rate 0.1 0.1 0.1(W ), 0.001(!) 0.01 0.2 0.2

schedule cosine cosine cosine cosine polynomial (p=2) cosine
Weight decay 0.0005 0.0001 0.0001 0.0001 0.0005 0.0001

Batch size 128 256 128 256 512 256
( Random (1st)

Class-balanced (2nd)
sampling

)

Class

Lo
gi
t

So
ftm

ax

Class

(a) logits zc (b) softmax exp(ω→zc)∑
k exp(ω→zk)

Figure 5. An example of an immature feature x̃ by ResNet-50
at the 1st epoch on ImageNet training. The logits zc = w̃T

c x̃
are shown in (a) and are converted to softmax in (b) with the LS-
optimized ω→ = 102. The points of higher logit scores, indicated
by circles, win the sparse softmax weights via the larger ω→.
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Figure 6. Relationship between the number of class (C) and the
optimized ω→.

larger number (C) of classifiers well describe an input fea-
ture in (10), enlarging ω↔.

6.3. Candidate values

In Section 2.3, we provide a candidate set over which the
optimal ω is searched in a simple greedy manner. In this
work, the set is simply composed of 20 values equally-log-
spaced in [e↓2, e5] as

ωj = exp

{
→2 +

5→ (→2)

19
j

}
, j ↔ {0, · · · , 19}, (30)

or practically written in PyTorch style by

torch.exp(torch.linspace(→2, 5, 20)). (31)

7. Training procedure

Deep models are trained by SGD optimizer with 0.9 mo-
mentum and the training parameters shown in Table 8; in
linear-probe transfer learning (Table 4a), we apply L-BFGS
optimizer to train a classifier for frozen features.

8. Additional results

8.1. Deep models

We additionally apply deep models of DenseNet [46],
ResNeXt [49] and MobileNet-v2 [48] to ImageNet train-
ing, and report performance results in Table 9 which are
measured in the same manner as Table 2; while DenseNet
and ResNeXt are trained in the procedure of Table 8, the
training parameters for MobileNet-v2 are slightly modi-
fied in weight decay of 0.00004 and learning rate of 0.045
which is exponentially decayed. So pre-trained models are
then applied to the tasks regarding model confidence (Sec-
tion 3.2.1, Figure 4) and transfer learning (Section 3.2.2,
Table 4); the results are shown in Tables 12,13&14. Sim-
ilarly to Section 3.2.1&3.2.2, we can observe that (1) the
optimized ω↔ works as a lower bound, (2) the middle
ω = 2ω↔ roughly maximizes performance on ImageNet, (3)
the smaller ω ↗ ω↔ renders high robustness against less-
confident samples, and (4) the larger ω exhibits favorable
generalization performance on transfer learning.

8.2. “Cosify”

Table 10 shows performance of ResNet-50 cosified with our
LS-optimized ω↔. In the cosification (via fine-tuning), the
LS method robustly produces the same ω↔. Besides, the
performances of transfer learning by all the cosified models
are detailed in Table 15. The same discussion/analysis as in
Section 3.2.2 can hold for these results.

8.3. Computation time

Our LS method is composed of two processes, computing
reconstruction ELS

ω in (10) and searching minium over ω



Table 9. Image classification accuracy (%) by various models on
ImageNet (C = 1000). These results augment Table 2.

Model DenseNet161 [46] ResNeXt-50 [49] MobileNet-v2 [48]
d 2208 2048 1280

softmax 78.97 78.20 68.69

LS (11) 78.65 78.46 66.04
(ω→) (12.50) (12.57) (14.49)

Fix ω = 10 78.42 78.34 65.23
ω = 20 78.81 78.29 67.63
ω = 30 78.89 78.20 68.94
ω = 40 78.76 78.02 69.41
ω = 50 78.61 77.87 69.49
ω = 60 78.08 77.38 69.32

ω = 2ω→ 78.75 78.28 68.96

Table 10. Performance of cosified ResNet50 with LS-optimized
ω→. These scores are measured in the ways of Table 2 and Figure 4.

Specialization

finetune blocks LS ImageNet AP for MISS AP for OOD
1 2 3 4 ω→ Acc. Zmax →x→2 Zmax →x→2

from scratch 12.83 77.27 0.9400 0.9011 0.9016 0.8428

↭ ↭ ↭ ↭ 12.79 77.19 0.9413 0.9062 0.9030 0.8474
- ↭ ↭ ↭ 12.77 77.09 0.9420 0.9063 0.9040 0.8555
- - ↭ ↭ 12.77 77.10 0.9415 0.9066 0.9055 0.8521
- - - ↭ 12.78 76.84 0.9410 0.9060 0.9008 0.8533

Table 11. Computation time (msec) to process a mini-batch and
optimize ω by LS.

whole Optimizing ω

mini-batch ELS
ω argminω

Food101 304 0.13 0.015
Cifar10 33.8 0.118 0.013

candidates argminω→K in (14). Table 11 shows computa-
tion time of those processes in comparison to a mini-batch
computation, demonstrating that they are performed in a
negligible computation cost.
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Table 12. Performance results of DenseNet161 [46] pretrained on ImageNet, for detecting miss-classified (MISS) and out-of-distribution
(OOD) samples in (a,b) (see Section 3.2.1) and transfer learning in (c) (see Section 3.2.2).

AP

Mahalanobis

(a) MISS detection

AP

Mahalanobis

(b) OOD detection

(c) Classification accuracy (%) by transfer learning

Dataset CUB-200 Food-101 Car-196 Aircraft-100 SUN-397 DTD Flower-102

Linear probe
softmax 74.91 74.62 58.97 50.86 61.97 74.36 90.75

Fixed ω = 10 33.98 40.80 16.52 12.57 41.42 58.24 39.70
20 57.01 63.77 39.58 40.02 54.90 67.98 77.56
30 70.09 71.14 55.29 50.71 59.22 73.24 88.00
40 75.68 74.32 61.87 55.69 61.23 74.36 91.97
50 76.42 75.12 64.30 58.54 61.58 74.95 92.13
60 78.93 75.62 66.15 59.59 61.58 74.47 93.48

Fine-tuning
softmax 80.87 87.52 86.62 77.40 63.08 75.48 95.84

Fixed ω = 10 79.76 86.42 85.72 78.60 61.88 74.63 91.99
20 81.97 87.67 86.72 80.19 63.34 76.60 93.92
30 83.13 87.74 87.71 80.88 64.44 78.09 95.56
40 84.13 87.74 88.29 81.77 64.52 76.91 96.47
50 83.78 87.82 88.51 80.31 65.03 78.03 96.67
60 83.30 87.86 88.72 81.26 64.96 78.09 96.96

Table 13. Performance results of ResNeXt-50 [49] pretrained on ImageNet, for detecting miss-classified (MISS) and out-of-distribution
(OOD) samples in (a,b) (see Section 3.2.1) and transfer learning in (c) (see Section 3.2.2).

AP

Mahalanobis

(a) MISS detection

AP

Mahalanobis

(b) OOD detection

(c) Classification accuracy (%) by transfer learning

Dataset CUB-200 Food-101 Car-196 Aircraft-100 SUN-397 DTD Flower-102

Linear probe
softmax 69.61 69.40 49.43 42.93 59.78 72.98 88.26

Fixed ω = 10 44.41 45.73 20.63 16.89 43.26 57.29 48.93
20 63.51 64.79 43.95 41.40 54.57 69.52 79.80
30 69.16 69.05 53.05 48.84 58.36 72.71 84.47
40 68.43 69.49 53.86 55.09 58.87 72.55 88.78
50 75.20 73.40 61.80 54.07 60.93 74.84 91.07
60 75.98 74.34 63.55 58.48 61.06 73.83 91.25

Fine-tuning
softmax 80.64 86.62 86.23 77.04 62.87 74.84 94.91

Fixed ω = 10 79.69 86.58 85.43 77.13 63.04 75.27 91.21
20 81.26 87.22 86.70 77.67 63.68 75.64 93.11
30 81.18 87.20 87.36 78.42 63.96 77.23 94.67
40 77.24 86.98 86.77 79.41 64.29 76.86 95.32
50 82.68 87.17 87.52 79.32 64.75 78.35 95.97
60 82.21 87.30 87.47 79.14 64.34 77.87 96.52



Table 14. Performance results of MobileNet-v2 [48] pretrained on ImageNet, for detecting miss-classified (MISS) and out-of-distribution
(OOD) samples in (a,b) (see Section 3.2.1) and transfer learning in (c) (see Section 3.2.2).

AP

Mahalanobis

(a) MISS detection

AP

Mahalanobis

(b) OOD detection

(c) Classification accuracy (%) by transfer learning

Dataset CUB-200 Food-101 Car-196 Aircraft-100 SUN-397 DTD Flower-102

Linear probe
softmax 68.16 67.45 48.85 48.54 55.60 70.16 89.67

Fixed ω = 10 37.94 43.68 18.54 20.43 39.54 56.17 51.86
20 57.01 59.81 32.86 38.07 49.84 65.80 76.35
30 66.55 64.34 44.34 45.96 53.41 67.55 85.41
40 68.76 67.34 49.67 48.42 54.87 68.40 87.95
50 70.40 68.89 53.26 51.25 55.69 67.61 89.95
60 70.28 69.37 54.50 52.42 55.52 69.95 90.10

Fine-tuning
softmax 74.59 83.27 78.95 71.10 58.89 71.81 93.60

Fixed ω = 10 71.93 81.60 75.07 64.24 56.64 69.84 88.15
20 74.24 82.88 78.39 67.99 58.09 72.18 91.68
30 75.43 83.52 79.76 69.48 59.38 73.30 93.01
40 75.97 83.51 79.75 69.45 59.55 73.14 94.13
50 76.64 83.60 80.36 69.90 59.66 72.61 94.20
60 76.79 83.26 79.89 69.12 59.81 73.46 94.54

Table 15. Classification accuracy (%) by transfer learning of cosified ResNet-50 with various ω.

finetune blocks
1 2 3 4 CUB-200 Food-101 Car-196 Aircraft-100 SUN-397 DTD Flower-102

Li
ne

ar
pr

ob
e

ω = 10; from scratch 47.13 48.23 23.44 22.29 44.69 59.15 55.47

↭ ↭ ↭ ↭ 51.28 54.77 30.17 27.90 47.37 62.55 65.31
- ↭ ↭ ↭ 50.79 54.72 30.52 29.46 47.01 62.13 63.82
- - ↭ ↭ 51.04 54.78 29.03 29.04 47.16 61.70 63.65
- - - ↭ 49.91 54.99 29.85 28.32 46.90 61.54 64.87

ω = 60; from scratch 75.63 74.04 61.86 57.16 61.14 74.10 92.19

↭ ↭ ↭ ↭ 71.52 71.09 52.88 48.45 60.11 75.64 89.80
- ↭ ↭ ↭ 71.49 71.07 52.38 48.57 60.25 75.27 89.77
- - ↭ ↭ 71.54 70.58 52.46 47.94 59.93 74.15 89.14
- - - ↭ 70.88 70.36 51.04 47.67 59.82 74.04 88.40

LS ω→; from scratch 52.62 57.04 27.50 26.49 50.22 66.91 63.05

↭ ↭ ↭ ↭ 57.78 61.51 37.78 34.26 52.60 67.77 76.44
- ↭ ↭ ↭ 56.94 61.87 37.15 33.69 52.61 66.01 75.62
- - ↭ ↭ 57.37 61.68 35.67 32.46 52.08 67.34 76.09
- - - ↭ 56.71 61.22 37.26 32.85 51.91 67.77 75.36

Fi
ne

-tu
ni

ng

ω = 10; from scratch 79.76 86.28 85.32 76.71 62.22 73.56 90.57

↭ ↭ ↭ ↭ 79.43 86.47 85.78 78.72 62.93 73.56 90.65
- ↭ ↭ ↭ 80.21 86.20 85.60 77.82 62.61 73.94 91.34
- - ↭ ↭ 79.62 86.65 85.90 79.11 62.76 74.15 91.11
- - - ↭ 79.54 86.39 85.68 79.08 63.14 74.57 90.91

ω = 60; from scratch 81.18 86.83 86.66 78.12 63.80 76.49 96.36

↭ ↭ ↭ ↭ 82.13 86.69 87.18 78.63 63.15 76.86 95.16
- ↭ ↭ ↭ 82.59 86.82 87.07 78.96 63.18 76.70 94.93
- - ↭ ↭ 82.66 86.79 86.88 79.23 63.37 76.86 95.01
- - - ↭ 82.59 86.74 87.00 79.26 63.28 76.91 95.20

LS ω→; from scratch 78.86 86.14 84.22 75.33 62.78 74.52 90.57

↭ ↭ ↭ ↭ 79.71 86.56 84.71 77.79 62.93 75.59 92.08
- ↭ ↭ ↭ 80.23 86.45 85.13 77.67 63.07 74.68 92.47
- - ↭ ↭ 79.81 86.23 85.06 77.49 62.67 74.89 92.20
- - - ↭ 79.92 86.36 85.72 78.84 62.82 74.47 91.86
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