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Supplementary Material

5. Softmax Representation

Softmax is derived from the optimization of
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as follows.
By introducing Lagrange multipliers A and {3.}¢_; for
the constraints (17, 18), the above optimization leads to

L= %Z aclog ochz ozcchr)\(Z acfl)—z Beae,

(19)
which produces the following derivatives and KKT condi-
tions;
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From (20), we can derive
ae. =exp(k(ze — A+ L) — 1) > 0, (23)

which is also accompanied by 5. = 0 in (22). On the other
hand, A can be determined so that (21) holds, finally result-
ing in the optimizer of softmax representation as
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5.1. Connection to Least-square approach

(24)

As shown in (8), the least-square representation is written
in
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In the case that the classifiers are less correlated, implying

WW =T (identity matrix) such as after sufficient train-
ing, (25) is further reduced to

gneué %Za? — Zaczc. (26)

Compared to (16), only difference is found in the first term
which injects regularization about sparsity; that is, nega-
tive entropy and Ly-norm are introduced for (moderately)
smoothing the coefficients a in the minimization of (16)
and (26), respectively. This analogy is a theoretical moti-
vation to regard the softmax representation (9) as an (ap-
proximated) x-parameterized optimizer for the least-square
problem (25).

6. Analysis about x

6.1. Characteristics

As the least-square formulation (8) is equivalent to one-
class SVM [47], it produces sparse coefficients o which
contain a few numbers of non-zero elements corresponding
to support vectors. It accordingly demands the softmax (9)
to be also sparse as an approximation of « (Section 5).

When the feature vector x is apart from the classifiers
especially at an early stage of training, the logits are quite
small; we can empirically observe that max, |z.] = ¢ < 1
for the immature features. For ease of discussion, suppose
that we have m-prominent logits of z.~ = ¢ and the other
logits are zeros. As describe above, it is necessary to convert
the less discriminative logits to m-sparse softmax of
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with small fraction 7 < 1. It is achieved by setting « as

_1l-n exp(ke)
plze) = m  mexp(ke) + (C —m) (28)
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Thus, as shown in Figure 1, the LS-optimized x* is larger
for immature features at early training epochs; Figure 5
demonstrates an empirical case for the feature at the Ist
epoch which renders x* = 102 in our LS method. Then,
as the training proceeds, the feature vector & approaches
the classifier w,, producing discriminative logits with an
enlarged e to reduce & in constructing sparse softmax.

6.2. Number of classes

Our method adaptively copes with various number of
classes, C. Figure 6 summarizes the optimized x* over
various C' on diverse datasets. It is noteworthy that our
method optimizes « based on a feature representation and
the number of classifiers (C), and generally speaking, the



Table 8. Training parameters.

Table 2 Table 4b Table 5 Table 6 Table 7
Cifar-10/100 Food-101/ImageNet Fine-tuning Cosify MS1M-RetinaFace  ImageNet-LT/iNat2018/Places-LT
Epochs 240 100 60 30 25 100 (1st) / 30 (2nd)
Learning rate 0.1 0.1 0.1(w), 0.001(©) 0.01 0.2 0.2
schedule cosine cosine cosine cosine polynomial (p=2) cosine
Weight decay  0.0005 0.0001 0.0001 0.0001 0.0005 0.0001
. Random (1st) .
Batch size 128 256 128 256 512 256 ( s balined on) sampling)
or practically written in PyTorch style by
§ torch.exp(torch.linspace(—2, 5, 20)). (31)
g- ge
3. 7. Training procedure
e e Deep models are trained by SGD optimizer with 0.9 mo-
'“;;p(,ﬁ*zc) mentum and the training parameters shown in Table 8; in

(a) logits z. (b) softmax

>k exp(Kr*zy)
Figure 5. An example of an immature feature & by ResNet-50
at the 1st epoch on ImageNet training. The logits z. = wl&
are shown in (a) and are converted to softmax in (b) with the LS-
optimized k* = 102. The points of higher logit scores, indicated
by circles, win the sparse softmax weights via the larger x*.
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Figure 6. Relationship between the number of class (C) and the
optimized ™.

larger number (C) of classifiers well describe an input fea-
ture in (10), enlarging x*.

6.3. Candidate values

In Section 2.3, we provide a candidate set over which the
optimal « is searched in a simple greedy manner. In this
work, the set is simply composed of 20 values equally-log-
spaced in [e72, €°] as

lijeXp{2+5_1(9_2)j}aj€{07"' 719}3 (30)

linear-probe transfer learning (Table 4a), we apply L-BFGS
optimizer to train a classifier for frozen features.

8. Additional results

8.1. Deep models

We additionally apply deep models of DenseNet [46],
ResNeXt [49] and MobileNet-v2 [48] to ImageNet train-
ing, and report performance results in Table 9 which are
measured in the same manner as Table 2; while DenseNet
and ResNeXt are trained in the procedure of Table &, the
training parameters for MobileNet-v2 are slightly modi-
fied in weight decay of 0.00004 and learning rate of 0.045
which is exponentially decayed. So pre-trained models are
then applied to the tasks regarding model confidence (Sec-
tion 3.2.1, Figure 4) and transfer learning (Section 3.2.2,
Table 4); the results are shown in Tables 12,13&14. Sim-
ilarly to Section 3.2.1&3.2.2, we can observe that (1) the
optimized x* works as a lower bound, (2) the middle
K = 2K* roughly maximizes performance on ImageNet, (3)
the smaller k ~ k" renders high robustness against less-
confident samples, and (4) the larger x exhibits favorable
generalization performance on transfer learning.

8.2. “Cosify”

Table 10 shows performance of ResNet-50 cosified with our
LS-optimized x*. In the cosification (via fine-tuning), the
LS method robustly produces the same «*. Besides, the
performances of transfer learning by all the cosified models
are detailed in Table 15. The same discussion/analysis as in
Section 3.2.2 can hold for these results.

8.3. Computation time

Our LS method is composed of two processes, computing
reconstruction 5,55 in (10) and searching minium over



Table 9. Image classification accuracy (%) by various models on [49] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and
ImageNet (C' = 1000). These results augment Table 2. Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, pages 5987-5995, 2017. 2, 3, 4

Model DenseNetl61 [46] ResNeXt-50 [49] MobileNet-v2 [48]

d 2208 2048 1280
softmax 78.97 78.20 68.69
LS (11) 78.65 78.46 66.04

(k™) (12.50) (12.57) (14.49)

Fix x = 10 78.42 78.34 65.23
k=20 78.81 78.29 67.63
k=30 78.89 78.20 68.94
k=40 78.76 78.02 69.41
k=50 78.61 77.87 69.49

Kk =60 78.08 77.38 69.32

Kk =2K" 78.75 78.28 68.96

Table 10. Performance of cosified ResNet50 with LS-optimized
k" . These scores are measured in the ways of Table 2 and Figure 4.

Specialization

finetune blocks LS~ ImageNet AP for MISS AP for OOD
1 2 3 4 K* Acc. Zmaa: ”:13“2 Zmaa: ”:BHZ

fromscratch 12.83  77.27 0.9400 0.9011 0.9016 0.8428

VvV Vv v 1279 7719 09413 0.9062 0.9030 0.8474
- vV VvV vV 1277 77.09 09420 0.9063 0.9040 0.8555
- - vV v 1277 7710 0.9415 0.9066 0.9055 0.8521

v 1278 76.84 0.9410 0.9060 0.9008 0.8533

Table 11. Computation time (msec) to process a mini-batch and
optimize ~ by LS.

whole Optimizing k&

mini-batch & ,f s arg min,

Food101 304 0.13 0.015
Cifar10 33.8 0.118 0.013

candidates arg min,ecx in (14). Table 11 shows computa-
tion time of those processes in comparison to a mini-batch
computation, demonstrating that they are performed in a
negligible computation cost.
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Table 12. Performance results of DenseNet161 [46] pretrained on ImageNet, for detecting miss-classified (MISS) and out-of-distribution
(OOD) samples in (a,b) (see Section 3.2.1) and transfer learning in (c) (see Section 3.2.2).

093 R’\‘\\ (c) Classification accuracy (%) by transfer learning
00| ° \ Dataset CUB-200 Food-101 Car-196 Aircraft-100  SUN-397 DTD Flower-102
o onsl Linear probe
s softmax 7491 74.62 58.97 50.86 61.97 74.36 90.75
0.80 Fixed xk = 10 33.98 40.80 16.52 12.57 41.42 58.24 39.70
e 20  57.01 63.77 39.58 40.02 54.90 67.98 77.56
075 —=~ Mahalanobis 30  70.09 71.14 55.29 50.71 59.22  73.24 88.00
softmax 10 A% 20, 30 40 50 60 40 75.68 74.32 61.87 55.69 61.23 74.36 91.97
(a) MISS detection 50  76.42 75.12 64.30 58.54 61.58  74.95 92.13
0.90 60  78.93 75.62 66.15 59.59 61.58 7447 93.48
085 “‘\V\\i‘i—-\ Fine-tuning
0s0] softmax  80.87 87.52 86.62 77.40 63.08  75.48 95.84
Eos Fixedx =10  79.76 86.42 85.72 78.60 61.88  74.63 91.99
070 20  81.97 87.67 86.72 80.19 63.34  76.60 93.92
oo e, 30 83.13 87.74 87.71 80.88 64.44  78.09 95.56
e s 40  84.13 87.74 88.29 81.77 64.52 7691 96.47
B e TR 50 8378 87.82 8851 80.31 6503 78.03  96.67
(b) OOD d:,tecﬁon 60  83.30 87.86 88.72 81.26 64.96  78.09 96.96

Table 13. Performance results of ResNeXt-50 [49] pretrained on ImageNet, for detecting miss-classified (MISS) and out-of-distribution
(OOD) samples in (a,b) (see Section 3.2.1) and transfer learning in (c) (see Section 3.2.2).

004 (c) Classification accuracy (%) by transfer learning
092 x Dataset CUB-200 Food-101 Car-196 Aircraft-100 SUN-397 DTD Flower-102
o 088 Linear probe
~oas softmax  69.61 69.40 49.43 42.93 59.78  72.98 88.26
084 5 Fixedk =10  44.41 45.73 20.63 16.89 4326  57.29 48.93
082 —— Zinaa 20  63.51 64.79 43.95 41.40 54.57  69.52 79.80
o Voo 30 69.16 69.05  53.05 48.84 5836 7271 8447
softmax 10 A% 20,30 4050 60 40 6843 69.49 53.86 55.09 58.87  72.55 88.78
(a) MISS detection 50  75.20 73.40 61.80 54.07 60.93 74.84 91.07
0.0 60  75.98 74.34 63.55 58.48 61.06  73.83 91.25
vesl ® T Fine-tuning
' softmax  80.64 86.62 86.23 77.04 62.87 74.84 94.91
%00 Fixedk =10  79.69 86.58 85.43 77.13 63.04  75.27 91.21
20  81.26 87.22 86.70 77.67 63.68  75.64 93.11
075 . 30 81.18 87.20 87.36 78.42 63.96 77.23 94.67
ol ® ek 40  77.24 86.98 86.77 79.41 6429  76.86 95.32
Ceoftmax To A 7030 40 50 60 50  82.68 87.17 87.52 79.32 64.75  78.35 95.97

(b) OOD detection 60 8221 8730  87.47 79.14 6434 7787  96.52




Table 14. Performance results of MobileNet-v2 [48] pretrained on ImageNet, for detecting miss-classified (MISS) and out-of-distribution
(OOD) samples in (a,b) (see Section 3.2.1) and transfer learning in (c) (see Section 3.2.2).

o0 —— ., . (c) Classification accuracy (%) by transfer learning

0.5 ’\"\,\\\-/. Dataset CUB-200 Food-101 Car-196 Aircraft-100 SUN-397 DTD Flower-102
0.80

Linear probe

softmax ~ 68.16 6745 4885  48.54 5560 7016 89.67
' Fixedw =10 37.94 4368 1854 2043 39.54 5617 5186
i, 20 5701 5981 3286 3807 49.84 6580 7635
oesl® - 30 6655 6434 4434 4596 5341 6755 8541
e 10K, 50 @S0 40 6876 6734 49.67 4842 5487 6840  87.95

() MISS detection 50 7040  68.89 5326 5125 5569  67.61  89.95

08s "/\_\/‘ 60  70.28 69.37 54.50 52.42 55.52  69.95 90.10

0.80{ 4 Fine-tuning
o softmax  74.59 83.27 78.95 71.10 58.80  71.81 93.60
% Fixedk =10 7193 81.60 75.07 64.24 56.64  69.84 88.15

20 7424 8288 7839 67.99 5809 7218  91.68
ool L 30 7543 8352  79.76 69.48 5938 7330  93.01
I s 40 7597 8351  79.75 69.45 5955 7314 94.13
e 50 76.64 83.60  80.36 69.90 5966 72.61 9420

(b) 0OD detection 60 7679 8326  79.89 69.12 5981 7346  94.54

Table 15. Classification accuracy (%) by transfer learning of cosified ResNet-50 with various «.

finetune blocks

1 2 3 4  CUB-200 Food-101 Car-196 Aircraft-100 SUN-397 DTD  Flower-102

x = 10; from scratch 47.13 48.23 23.44 22.29 44.69 59.15 55.47

v v v v 51.28 54.77 30.17 27.90 47.37 62.55 65.31

- v v Vv 50.79 54.72 30.52 29.46 47.01 62.13 63.82

- - vV 51.04 54.78 29.03 29.04 47.16 61.70 63.65

o - - - v 4991 54.99 29.85 28.32 46.90 61.54 64.87
R

i Kk = 60; from scratch 75.63 74.04 61.86 57.16 61.14 74.10 92.19

§ v v v v 71.52 71.09 52.88 48.45 60.11 75.64 89.80

s - v Vv Y 71.49 71.07 52.38 48.57 60.25 75.27 89.77

N - v Y 71.54 70.58 52.46 47.94 59.93 74.15 89.14

- - - v 70.88 70.36 51.04 47.67 59.82 74.04 88.40

LS &*; from scratch 52.62 57.04 27.50 26.49 50.22 66.91 63.05

v v v v 57.78 61.51 37.78 34.26 52.60 67.77 76.44

- v v Vv 56.94 61.87 37.15 33.69 52.61 66.01 75.62

- - vV 57.37 61.68 35.67 32.46 52.08 67.34 76.09

- - - v 56.71 61.22 37.26 32.85 51.91 67.77 75.36

x = 10; from scratch 79.76 86.28 85.32 76.71 62.22 73.56 90.57

v v v v 79.43 86.47 85.78 78.72 62.93 73.56 90.65

- v v v 80.21 86.20 85.60 77.82 62.61 73.94 91.34

- - v Y 79.62 86.65 85.90 79.11 62.76 74.15 91.11

o - - v 79.54 86.39 85.68 79.08 63.14 74.57 90.91

§ % = 60; from scratch 81.18 86.83 86.66 78.12 63.80 76.49 96.36
3

TV vV vV Y 82.13 86.69 87.18 78.63 63.15 76.86 95.16

-E - v v Vv 82.59 86.82 87.07 78.96 63.18 76.70 94.93

- - vV 82.66 86.79 86.88 79.23 63.37 76.86 95.01

- - - v 82.59 86.74 87.00 79.26 63.28 76.91 95.20

LS x*; from scratch 78.86 86.14 84.22 75.33 62.78 74.52 90.57

v v v v 79.71 86.56 84.71 77.79 62.93 75.59 92.08

- Vv 80.23 86.45 85.13 77.67 63.07 74.68 92.47

v v
v Vv 79.81 86.23 85.06 77.49 62.67 74.89 92.20
- v 79.92 86.36 85.72 78.84 62.82 74.47 91.86
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