
A. Qualitative Results
The alignment of generated images to prompt conditioning
using Residual Classifier-Free Guidance (R-CFG) is depicted
in Fig. 7. The generated images, without using any form
of CFG, exhibit weak alignment to the prompt, particularly
in aspects like color changes or the addition of non-existent
elements, which are not effectively implemented. In contrast,
the use of CFG or R-CFG enhances the ability to modify
original images, such as changing hair color, adding body
patterns, and even incorporating objects like glasses. No-
tably, the use of R-CFG results in a stronger influence of
the prompt compared to standard CFG. R-CFG, although
limited to image-to-image applications, can compute the vec-
tor for negative conditioning while continuously referencing
the latent value of the input image and the initially sampled
noise. This approach yields more consistent directions for
the negative conditioning vector compared to the standard
CFG, which uses UNet at every denoising step to calcu-
late the negative conditioning vector. Consequently, this
leads to more pronounced changes from the original image.
However, there is a trade-off in terms of the stability of the
generated results. While Self-Negative R-CFG enhances the
prompt’s effectiveness, it also has the drawback of increasing
the contrast of the generated images. To address this, adjust-
ing the delta in Eq. 6 can modulate the magnitude of the
virtual residual noise vector, thereby mitigating the rise in
contrast. Additionally, using Onetime-Negative R-CFG with
appropriately chosen negative prompts can mitigate contrast
increases while improving prompt adherence, as observed in
Fig. 7. This approach allows the generated images to blend
more naturally with the original image.

Besides, Fig. 8 in the appendix shows the image-to-image
generation results using StreamBatch Cross-frame attention,
with 4 denoising steps. As evident from the figure, compared
to the results of StreamDiffusion without Cross-frame atten-
tion, the method incorporating information from future and
past frames exhibits increased temporal consistency.

B. More method details
B.1. Input-Output Queue
The current bottleneck in high-speed image generation sys-
tems lies in the neural network modules, including VAE and
U-Net. To maximize the overall system speed, processes
such as pre-processing and post-processing of images, which
do not require handling by the neural network modules, are
moved outside of the pipeline and processed in parallel.

In the context of input image handling, specific oper-
ations, including resizing of input images, conversion to
tensor format, and normalization, are meticulously executed.
To address the disparity in processing frequencies between
the human inputs and the model throughput, we design an
input-output queuing system to enable efficient paralleliza-

tion, as shown in Fig. 9. This system operates as follows:
processed input tensors are methodically queued for Diffu-
sion Models. During each frame, Diffusion Model retrieves
the most recent tensor from the input queue and forwards it
to the VAE Encoder, thereby triggering the image generation
sequence. Correspondingly, tensor outputs from the VAE
Decoder are fed into an output queue. In the subsequent
output image handling phase, these tensors are subject to a
series of post-processing steps and conversion into the ap-
propriate output format. Finally, the fully processed image
data is transmitted from the output handling system to the
rendering client.

B.2. Pre-computation
The U-Net architecture requires both input latent variables
and conditioning embeddings. Typically, the conditioning
embedding is derived from a text prompt, which remains
constant across different frames. To optimize this, we pre-
compute the prompt embedding and store it in a cache. In
interactive or streaming mode, this pre-computed prompt
embedding cache is recalled. Within U-Net, the Key and
Value are computed based on this pre-computed prompt
embedding for each frame. We have modified the U-Net to
store these Key and Value pairs, allowing them to be reused.
Whenever the input prompt is updated, we recompute and
update these Key and Value pairs inside U-Net.

For consistent input frames across different timesteps
and to improve computational efficiency, we pre-sample
Gaussian noise for each denoising step and store it in the
cache. This approach is particularly relevant for image-to-
image tasks.

We also precompute ατ and βτ , the noise strength coeffi-
cients for each denoising step τ , defined as:

xt =
√
ατx0 +

√
βτ ϵ (10)

This is a minor point in low throughput scenarios, but at
frame rates higher than 60 FPS, the overhead of recomputing
these static values becomes noticeable.

We note that we have a specific design for the inference
parameterization for latent consistency models (LCM). As
per the original paper, we need to compute cskip(τ) and
cout(τ) to satisfy the following equation:

fθ(x, τ) = cskip(τ)x+ cout(τ)Fθ(x, τ). (11)

The functions cskip(τ) and cout(τ) in original LCM [25]
is constructed as follows:

cskip(τ) =
σ2
data

(sτ)2 + σ2
data

, cout(τ) =
σdatasτ√

σ2
data + (sτ)2

,

(12)

11



Figure 7. Results using no CFG, standard CFG, and R-CFG with Self-Negative and Onetime-Negative approaches. When compared to
cases where CFG is not utilized, the cases with CFG utilized can intensify the impact of prompts. In the proposed method R-CFG, a more
pronounced influence of prompts was observed. Both CFG and R-CFG use guidance scale γ = 1.4. For R-CFG, the first two rows use
magnitude modelation coefficient δ = 1.0, and the third row uses δ = 0.5.

where σdata = 0.5, and the timestep scaling factor
s = 10. We note that with s = 10, cskip(τ) and cout(τ)
approximate delta functions that enforce the boundary condi-
tion to the consistency models. (i.e., at denoising step τ = 0,
cskip(0) = 1, cout(0) = 0; and at τ ̸= 0, cskip(τ) = 0,
cout(τ) = 1). At inference time, there’s no need to recom-
pute these functions repeatedly. We can either pre-compute
cskip(τ) and cout(τ) for all denoising steps τ in advance
or simply use constant values cskip = 0, cout = 1 for any
arbitrary denoising step τ .

B.3. Model Acceleration and Tiny AutoEncoder

We employ TensorRT to construct the U-Net and VAE en-
gines, further accelerating the inference speed. TensorRT is
an optimization toolkit from NVIDIA that facilitates high-
performance deep learning inference. It achieves this by
performing several optimizations on neural networks, includ-

ing layer fusion, precision calibration, kernel auto-tuning,
dynamic tensor memory, and more. These optimizations
are designed to increase throughput and efficiency for deep
learning applications.

To optimize speed, we configured the system to use static
batch sizes and fixed input dimensions (height and width).
This approach ensures that the computational graph and
memory allocation are optimized for a specific input size,
leading to faster processing times. However, this means that
if there is a requirement to process images with different
shapes (i.e., varying heights and widths) or to use different
batch sizes (including those for denoising steps), a new en-
gine tailored to these specific dimensions must be built. This
is because the optimizations and configurations applied in
TensorRT are specific to the initially defined dimensions and
batch size, and changing these parameters would necessitate
a reconfiguration and re-optimization of the network within
TensorRT.

12



Figure 8. Time consistency qualitative evaluation: In cases where the subject’s face moves significantly in intermediate frames, it can be
observed that using StreamBatch Cross-frame attention produces more appropriate and temporally consistent generation results by leveraging
the context from preceding and succeeding frames.

Besides, we employ a tiny AutoEncoder, which has been
engineered as a streamlined and efficient counterpart to the
traditional Stable Diffusion AutoEncoder [17, 31]. TAESD
excels in rapidly converting latents into full-size images and
accomplishing decoding processes with significantly reduced
computational demands.

C. Text-to-Image Quality

The quality of standard text-to-image generation results is
demonstrated in Fig. 10. Using the sd-turbo model, high-
quality images like those shown in Fig. 10 can be generated
in just one step. When images are produced using our pro-
posed StreamDiffusion pipeline and SD-turbo model in an
environment with GPU: RTX 4090, CPU: Core i9-13900K,
and OS: Ubuntu 22.04.3 LTS, it’s feasible to generate such

13



Figure 9. Input-Output Queue: The process of converting input images into a tensor data format manageable by the pipeline, and conversely,
converting decoded tensors back into output images requires a non-negligible amount of additional processing time. To avoid adding these
image processing times to the bottleneck process, the neural network inference process, we have segregated image pre-processing and
post-processing into separate threads, allowing for parallel processing. Moreover, by utilizing an Input Tensor Queue, we can accommodate
temporary lapses in input images due to device malfunctions or communication errors, enabling smooth streaming.

high-quality images at a rate exceeding 100fps. Furthermore,
by increasing the batch size of images generated at once to
12, our pipeline can continuously produce approximately
150 images per second. The images enclosed in red frames
shown in Fig. 10 are generated in four steps using commu-
nity models merged with LCM-LoRA. While these LCM
models require more than 1 step for high quality image gen-
eration, resulting in a reduction of speed to around 40fps,
these LCM-LoRA based models offer the flexibility of utiliz-
ing any base model, enabling the generation of images with
diverse expressions.

D. GPU Usage Under Dynamic Scene
We also evaluate the GPU usage under dynamic scenes on
one RTX 4090 GPU, as shown in the Figure. 12. The
analysis of the GPU usage is shown in Section 4.2 of the
main text.

14



Figure 10. Text-to-Image generation results. We use four step denoising for LCM-LoRA, and one step denoising for sd-turbo. Our
StreamDiffusion enables the real-time generation of images with quality comparable to those produced using Diffusers AutoPipeline
Text2Image.

Figure 11. GPU Usage comparison under static scene. (GPU: RTX3060, Number of frames: 20) The blue line represents the GPU usage
with SSF, the orange line indicates GPU usage without SSF, and the red line denotes the Skip probability calculated based on the cosine
similarity between input frames. Additionally, the top of the plot displays input images corresponding to the same timestamps. In this case,
the character in the input images is only blinking.

15



Figure 12. GPU Usage comparison under dynamic scene. (GPU: RTX4090, Number of frames: 1000) The blue line represents the GPU
usage with SSF, the orange line indicates GPU usage without SSF, and the red line denotes the Skip probability calculated based on the
cosine similarity between input frames. Additionally, the top of the plot displays input images corresponding to the same timestamps. In this
case, the character in the input images keeps moving dynamically. Thus, this analysis compares GPU usage in a dynamic scenario.

16


