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1. About Baseline method
1.1. Negative Prompt Guidance (NP)
The negative prompt technique (NP) is not proposed in any of the papers, but it is the most widely used method to suppress
certain content in the generation process. NP is implemented by replacing unconditional noise in classifier-free guidance
with negative condition noise, which can be expressed as follows:

ϵ̂(zt) = ϵ(zt, eN ) + sCFG(ϵ(zt, eP )− ϵ(zt, eN )), (1)

where eN is negative prompt’s embedding, eP is a positive prompt’s embedding, sCFG is guidance scale of classifier-free
guidance and ϵ(zt, eN ) means negative condition noise.

1.2. SEmantic GuidAnce (SEGA)
The SEmantic GuidAnce (SEGA) is a method that adds semantic guidance to classifier-free guidance by obtaining only
the semantic signal from the upper and lower tails of the difference between negative conditional and unconditional noise.
Specifically, SEGA can be expressed as follows:

ϵ̂(zt) = ϵ(zt, ∅) + sCFG(ϵ(zt, eP )− ϵ(zt, ∅)) + γ(zt, ec)
semantic guidance

+ smνt, (2)

where eP is the embedding of a positive prompt, such as “a photo of Steve Jobs,” and ∅ means unconditional embedding.
ec is the embedding of a prompt that refers to the content we want to control, such as “glasses” in the Steve Jobs example.
This also means negative content in the main paper. And sm is the momentum scale, νt denotes the momentum of semantic
guidance. This semantic guidance can be expressed as follows:

γ(zt, ec) = µ(ψ; se, λ)ψ(zt, ec), (3)

where ψ(zt, ec) =

{
ϵ(zt, ec)− ϵ(zt, ∅) if positive guidance
−(ϵ(zt, ec)− ϵ(zt, ∅)) if negative guidance,

(4)

µ(ψ; se, λ) =

{
se where |ψ| ≥ ζλ(|ψ|)
0 otherwise,

. (5)

where ζλ(|ψ|) is the λ-th percentile of ψ and se denotes semantic guidance scale.

1.3. Prompt-to-Prompt (P2P)
Prompt-to-Prompt (P2P) is a method to add or remove attributes by directly controlling the attention map of cross attention
in stable diffusion, and in this paper, we used the re-weight method to change the weight of the attention map among the
methods proposed by P2P.

2. DDIM inversion
2.1. Denoising Diffusion Probabilistic Models(DDPM)
A diffusion model, as proposed in the DDPM paper [9], is a generative model that produces a clean image z0 from a fully
noisy state zT ∼ N (0, 1) through a sequential denoising process (backward process) p(zt−1 | zt) over T steps. The diffusion
model is trained by injecting noise into clean images using a noising process (forward process) and learning to predict the
noise. The forward process is a fixed process that uses Gaussian noise and is defined with a pre-scheduled αt, as follows:

q (zt | zt−1) := N (zt;
√
αtzt−1, (1− αt) I) ,

q(zT |z0) ≈ N (zT ;0, I),
(6)



where αt follows a predefined schedule with t ranging from 1 to T . The backward process corresponding to this forward
process is expressed as follows:

zt−1 =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t)

)
+ σtη, where η ∼ N (0, I), (7)

where σ2
t =

(
1−ᾱt−1

1−ᾱt

)
(1− αt) denotes the sampling variance, the ᾱt defined as

∏t
τ=1 ατ and ϵθ(zt, t) means the diffusion

model.

2.2. DDIM & DDIM inversion
Since DDPM is a Markovian process, it typically requires T sequential steps to generate an image. To address the long sam-
pling time, Denoising Diffusion Implicit Models(DDIM) paper [32] proposed DDIM sampling, a non-Markovian sampling
method. A key feature of DDIM is that it allows control over randomness through σt, where σt = 0 results in deterministic
sampling. The non-Markovian sampling process proposed in the paper is defined as follows:

zt−1 =
√
ᾱt−1

(
zt −

√
1− ᾱtϵθ(zt, t)√

ᾱt

)
predicted x0

+
√
1− ᾱt−1 − σ2

t ϵθ(zt, t)
direction pointing to zt

+ σtη
random noise

, η ∼ N (0, I). (8)

When {σt}Tt=0 = {0}, the process becomes deterministic, which is known as a DDIM process. In this deterministic setting,
an inversion process can be applied to map an image to its corresponding latent representation. This inversion process is
defined as follows:

zt =
√
αtzt−1 +

√
ᾱt

(√
1− ᾱt√
ᾱt

−
√
1− ᾱt−1√
ᾱt−1

)
ϵθ(zt−1, t). (9)

This inversion process maps an image to a latent representation, which can be reconstructed into an image through DDIM
sampling. Unlike the forward process in the training, which relies on Gaussian noise, DDIM inversion is deterministic and
preserves the structure of the original image. This property provides an advantage for learning the features of the attention
map, which is important for the task at hand.

3. Local Blending and Identity Preservation
To preserve the original image structure while suppressing negative content, we propose a local blending approach that
minimizes unintended distortion.

3.1. Attention Feature Local Blending
We introduce two complementary methods for identifying regions requiring modification: Attention-Based Latent Blending
(ABL) and Difference-Based Latent Blending (DBL).

3.1.1. Attention-Based Latent Blending (ABL)
ABL utilizes attention maps from the SSDV-applied text embedding to precisely identify regions containing negative content.
For an attention map A ∈ RL×D×H×W (where L represents the number of U-Net layers and D the number of attention
heads), we aggregate A via mean pooling to obtain Â ∈ RH×W . The ABL mask MABL is then defined as:

MABL = 1(Â > τABL ∗max(Â)), (10)

where 1(·) is the indicator function and τABL ∈ [0, 1] is a threshold parameter.

3.1.2. Difference-Based Latent Blending (DBL)
DBL generates a binary mask based on the differences in latent space before and after suppression. This approach identifies
regions where SSDV modification has the most significant impact. The DBL mask MDBL is defined using the difference
∆x = |xSSDV − x| between the SSDV-applied latent xSSDV and the original latent x:

MDBL = 1(∆x > QτDBL(∆x)), (11)

where QτDBL(∆x) represents the τDBL-th quantile of the set of all elements {∆xi} in ∆x, and τDBL ∈ [0, 1] controls the
sensitivity of the mask.



3.1.3. Combined Latent Blending
We combine both approaches by multiplying the masks to obtain the final latent blending mask Mlatent = MDBL ⊙MABL.
This ensures that modifications are applied only to regions identified by both methods. The modified SSDV-applied latent
xSSDV′ is then computed as:

xSSDV′ = x+Mlatent ⊙ (xSSDV − x),

where ⊙ represents element-wise multiplication. This approach effectively localizes modifications to targeted regions while
preserving the original image structure in unaffected areas, thereby minimizing unnecessary distortion in the latent represen-
tation.

3.2. Attention Feature Blending (AFB)
AFB is a technique that performs blending using the intermediate features of the cross-attention layer (specifically, the
product of the attention map and the value tensor). It calculates the feature mask MAFB using the difference between the
SSDV-applied feature FSSDV = Attention(Q,K∗, V ∗) and the feature without it F = Attention(Q,K, V ):

∆F = |F − FSSDV|, (12)
MAFB = 1(∆F > QτAFB

(∆F )), (13)
FSSDV′ = F +MAFB ⊙ (FSSDV − F ), (14)

where τAFB ∈ [0, 1] controls the sensitivity of the mask. Blending at the attention feature level allows for more precise control
of the suppression level, enabling suppression while maximally preserving identity, as shown in Sec 7.5.

4. Implementation details
In our implementation, we utilized the Stable Diffusion v1.5. In all our experiments, we empirically set αk = 1.3, αv = −1.3,
τABL = 0.3, τDBL = 0.9 and τAFB = 0.35, respectively. For delta optimization experiment, λattn was set to 0.5, and α was set
to 1.0 and τABL = 0.5, τDBL = 0.85, τAFB = 0.35, respectively. We used the AdamW optimizer with a learning rate of 0.1,
β1 = 0.5, β2 = 0.8, and a weight decay of 0.033.

We used the text prompt ”A photo of object” to evaluate our method, and the (object ↔ negative content) pairs in the
proposed SEP-Benchmark are as follows: (Steve Jobs ↔ Glasses), (Camera ↔ Lens), (Radio ↔ Dial), (Superman ↔ Cape),
(Backpack ↔ Zipper), (Bed ↔ Pillow), (Bicycle ↔ Pedal), (Shirt ↔ Button), (candle ↔ candlelight), (rhinoceros ↔ horn).

5. Dataset Details
5.1. Validation of strongly entangled pairs
We quantify the entanglement of each subject-content pair by comparing the key/value vectors of the EOT token embeddings
for “Steve Jobs with glasses” and “Steve Jobs”. A smaller difference indicates that the embedding for “Steve Jobs” partially
encodes information related to “glasses”. We define the Disentanglement Ratio (D.R.) as the normalized magnitude of this
difference vector, calculated as follows:

∥∆∥ = ∥f(eSJ with glasses)− f(eSJ)∥2 , Disentanglement Ratio =
∥∆∥
∥eSJ∥

, (15)

where eSJ with glasses is the embedding of the EOT token for “Steve Jobs with glasses”, and eSJ is the embedding of the EOT
token for “Steve Jobs”. These embeddings are projected using the projection layer f . By averaging across each key and
value layer and comparing the results with general words such as “man” rather than “Steve Jobs”, we observe that our
subject-content pairs exhibit lower disentanglement, as shown in Table 4.

Content glasses lens dial cape zipper pillow pedal button light horn
Subject Steve Jobs man camera thing radio thing Superman character backpack thing bed thing bicycle thing shirts clothes candle thing rhinoceros animal
Key D.R 0.637 1.038 0.726 1.017 0.873 0.998 0.786 0.920 0.652 1.019 0.788 1.131 0.747 1.102 0.638 0.791 0.490 0.984 0.701 0.997
Value D.R 0.594 1.023 0.671 1.029 0.823 0.959 0.711 0.900 0.627 0.991 0.737 1.095 0.686 1.081 0.593 0.754 0.470 0.956 0.627 0.949

Table 4. Disentanglement Ratio between subject–negative content pairs in Stable Diffusion, reordered to match the specified pairing.



We also compared the Disentanglement Ratio of specific subjects S∗ trained in DreamBooth-tuned models with that of
general nouns. As shown in Table 5, the trained subjects S∗ exhibit strong entanglement with negative content, as indicated
by their low Disentanglement Ratio.

Content yellow cape berry
Subject S∗ toy toy S∗ figure figure S∗ bowl bowl
Key D.R 0.5311 0.8260 0.6071 0.8901 0.4403 0.6101
Value D.R 0.4887 0.7508 0.5962 0.8315 0.4404 0.5817

Table 5. Disentanglement Ratio between subject-negative content pairs in DreamBooth-tuned model.

6. Additional Analysis
6.1. Performance of evaluation metrics at various alpha values
We calculated the CLIP-score, IFID for various values of α, a hyperparameter controlling the strength of suppression, in a
zero-shot approach. For an accurate comparison, we conducted experiments in this study excluding Local Blending. The
results are summarized in Table. 6, reveal a clear trend: as α increases, both the CLIP-score and IFID values rise, indicating
stronger suppression. Figure 1 presents the suppression results for each value of α. As αk increases and αv decreases,
it becomes increasingly evident that the glasses in “a photo of Bill Gates” are being suppressed, demonstrating a stronger
tendency for the glasses to gradually disappear.

α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0
CLIP ↓ 17.01 16.93 16.82 16.66 16.62 16.45 16.17
IFID ↑ 22.74 26.28 30.30 36.74 45.34 53.88 72.64

Table 6. Evaluation table for the effect of the hyperparameter α, α represents the absolute values of αk and αv .

“a photo of Bill Gates” → suppress: “glasses”

“a photo of bed” → suppress: “pillow”

𝛼! = 0.0
𝛼" = 0.0

𝛼! = 1.0
𝛼" = −1.0

Figure 1. Visualization of suppression at various alpha values. The above results correspond to different values of α, with αk increasing
by increments of 0.2 and αv decreasing by increments of -0.2.



6.2. Delta Optimization with αv > 0

Original S* Optimize delta with 𝛼! < 0 Optimize delta with 𝛼! > 0

Figure 2. Suppression of “cape” from “S∗ figure” when using delta vector optimizing with αv > 0 and αv < 0.

We propose a delta-optimization method to obtain a delta embedding that accurately encodes negative content, which may
be distorted during personalized tuning. By optimizing the delta as described in Equation 11 of the main paper, we enable
e∗v to precisely identify the targeted negative content, facilitating its subsequent suppression. Consequently, setting αv > 0
during optimization is appropriate, as verified by our experiment comparing suppression results of “cape” from the S∗ figure
with αv > 0 versus αv < 0, as shown in Figure 2.

6.3. Attention to Negative Content Regions
We compared the attention maps of e∗k and “glasses” (two images on the left) to evaluate how accurately the “glasses” region
is captured. The map from e∗k yields a higher IoU, indicating it focuses more precisely on the glasses. However, the “glasses”
token’s attention is noisy and spills into the background, leading to structural distortions in the final image (third image on
the right). Thus, for strongly entangled content, using e∗k better preserves the original structure than relying solely on the
cross-attention of the “glasses” token.

Prompt : A photo of Steve Jobs

Negative content : glasses

Prompt : A photo of Steve Jobs

SSDV- 𝑒𝑘
∗ SSDV- glassesOriginal(IoU:0.037) (IoU:0.032)

𝑒𝑘
∗ Glasses

0.0

1.0

Figure 3. Attention map of e∗k and “glasses” given the input prompt “A photo of Seteve Jobs” (Left). Results of SSDV using the attention
of e∗k and “glasses” for suppression (Right).

6.4. Additional Image-Quality Evaluation
Although IFID evaluates suppression effectiveness, it is also affected by image quality degradation. To verify that our
approach maintains image quality, we additionally evaluate image quality using BRISQUE [20] scores and SSIM [35]. As
reported in Table 7, our method consistently attains higher SSIM and lower BRISQUE scores than competing baselines.
Our method not only effectively suppresses negative content but also achieves good image-quality preservation compared to
baselines that do not perform suppression.

SD NP P2P SupEOT SEGA Inst-Inpaint Ours
Brisque↓ 16.68 18.45 18.59 20.14 17.43 19.67 17.82
SSIM↑ 1.0 0.5279 0.5445 0.5019 0.7549 0.5279 0.6968

Table 7. Quantitative comparison of image quality across methods.

7. Additional Results
7.1. Results on Stable Diffusion
An additional qualitative comparison of suppression results with previous methods in Stable Diffusion is presented in Fig-
ure 4. These results demonstrate that our method effectively suppresses strongly entangled content during the image genera-



Bicycle
(-pedal)

SD Ours NP P2P SupEOT SEGA Inst-Inpaint

Steve Jobs
( - glasses )

Rhinoceros
( - horn )

Candle
( - light )

Figure 4. Comparison of qualitative results with previous methods on the Stable diffusion. The text in the leftmost column consists of
the object to be generated (e.g., “A photo of Steve Jobs”) along with the negative prompt (e.g., “glasses”) in parentheses.

tion process, which previous methods could not suppress, by separating the negative content from the target word as proposed
in Sec. 4.3 of the main paper.

7.2. Results on DreamBooth

A photo of S* bowl ( - berry)

A photo of S* figure ( - cape)

A photo of S* toy duck ( - yellow)

Figure 5. Our zero-shot suppression results on DreamBooth-tuned model. The leftmost image represents the original generated output
of the DreamBooth-tuned model, while the images on the right show the suppression results of our method when provided with the input
prompt shown below each figure, along with the negative content indicated in parentheses.



Optimized Delta 

Optimized Delta 

Zero-shot Delta 

Zero-shot Delta 

A photo of S* bowl ( - berry )

A photo of S* figure ( - cape )

Image

Mask

Image

Mask

Figure 6. Optimized delta vs Zero-shot delta on DreamBooth. The leftmost part shows the subject S∗ image used during training to
obtain the optimized delta, along with the mask indicating regions of negative content. On the right, we present suppression results obtained
using the optimized delta and the zero-shot delta, with input prompts and corresponding negative content indicated in parentheses below
each image.

Additional suppression results for the DreamBooth-personalized diffusion model are presented in Figure 5. These results
demonstrate the effectiveness of our SSDV method with the zero-shot delta, illustrating successful suppression of negative
content across multiple generation seeds.

Figure 6 presents suppression results using the optimized delta on the DreamBooth-personalized model. In the first row,
the bowl maintains its original identity while successfully removing the negative content (”berry”). In contrast, the second
row illustrates the results using the zero-shot delta, where suppression remains effective, but the bowl’s identity is slightly
compromised. This behavior was consistently observed in the suppression of the cape from the S∗ figure.

7.3. Results on CustomDiffusion

Figure 7 presents suppression results for the CustomDiffusion-personalized model. The first column shows images generated
from the CustomDiffusion model using the input prompt, while the remaining columns illustrate results after applying various
suppression methods. Specifically, the second column demonstrates that our method successfully suppresses negative content,
confirming its effectiveness on CustomDiffusion-based models.

We further compare our SSDV method using optimized and zero-shot delta vectors on a CustomDiffusion-based model in
Figure 8. The first column shows the subject S∗ image and the mask indicating negative content used for optimization. In
the second and fourth rows, results obtained using the zero-shot delta show effective suppression but slightly compromised
subject identity. Conversely, the first and third rows show results using the optimized delta, clearly demonstrating superior
preservation of the subject identity along with precise suppression. These results indicate that optimizing the delta vector
enables more accurate suppression of targeted negative content.



SD Ours NP P2P SupEOT SEGA Inst-Inpaint

a photo of 𝑆∗ bowl
(-berry )

a photo of 𝑆∗ figure
(-cape )

a photo of 𝑆∗ toy duck
(-yellow )

Figure 7. Qualitative results with other methods on CustomDiffusion-based. We can suppress the negative content (in the leftmost
parentheses) when the input positive prompt (located above parentheses) is given.

Optimized Delta

Optimized Delta

Zero-shot Delta

Zero-shot Delta

Image

Image

Mask

Mask

A photo of S* bowl (-berry)

A photo of S* figure (-cape)

Figure 8. Optimized delta vs Zero-shot delta on CustomDiffusion. The leftmost part shows the subject S∗ image and the corresponding
mask used during training to obtain the optimized delta, with negative content regions masked out. On the right, we present suppression
results using the optimized and zero-shot deltas, with input prompts and targeted negative content indicated in parentheses below each
image.

7.4. Comparison with Compositional Diffusion
While Compositional Diffusion [16] implements concept conjunction (AND) and concept negation (NOT) by combining the
score functions of each condition during generation, our method directly modulates text embeddings and Cross-attention
for suppression. As shown in the Table 8, our method outperforms Compositional Diffusion on CLIP, IFID, and DetScore.



Notably, Compositional Diffusion tends to distort background and structure due to its score-based sampling, whereas our
method explicitly controls entangled content within the text embeddings, enabling more effective suppression of strongly
entangled content, as shown in Figure 9.

CLIP↓ IFID↑ DetScore↓ SSIM↑ Brisque↓
Compositional Diffusion 15.94 3.14 0.220 0.4348 16.59

Ours 15.92 87.34 0.113 0.6968 17.82

Table 8. Quantitative comparison between Compositional Diffusion and Our method

Prompt : a photo of Steve Jobs

Negative content : glasses

SD Compositional Ours

Prompt : a photo of candle

Negative content : candlelight 

SD Compositional Ours

Figure 9. Qualitative comparison between Compositional Diffusion and our method. Compositional Diffusion tends to distort the
background and structure, whereas our method explicitly controls entangled content and achieves more effective suppression.

7.5. Additional Results of Suppression Content Entangled with Person
We present additional experimental results on persons in Figure 10, demonstrating the suppression of content strongly entan-
gled with specific individuals; for example, suppressing the concept “bald” from an image of Jeff Bezos.

Bill Gates (-glasses) Avril Lavigne (-eyeline) Charlie Chaplin (-mustache) Jeff Bezos (-bald)

Figure 10. Results of suppressing content entangled with person. The right images show the results after suppressing content from
the images generated using the prompts on the left. The text on each image indicates the original prompt along with the content to be
suppressed in parentheses.

8. Application
8.1. Adding content
Our proposed method enables content addition during image generation by applying the SSDV method with a positive αv

value, which enhances content information through cross-attention. Figure 11 illustrates examples, where the left images are
generated from prompts and the right images show results after content addition.

Prompt: cityscape at sunset
Adding content: Monet style

Prompt: tree
Adding content: blossom

Prompt: lion
Adding content: sunglasses

Figure 11. Results of adding an object with SSDV. The right images show the results obtained by adding content to the images generated
from the prompts on the left.



8.2. Real-Image Content Supression
We also demonstrate that our method can apply to real images in Figure 12. We employed the Null-text inversion [21]
for accurate reconstruction of real images, performing suppression of specific content during the generation process.We
also visualised the attention map generated during the process, which showed that our method successfully captured and
suppressed negative content, even when editing real images.

Null Inv

a photo of Steve Jobs (-glasses)

 Null Inv w/ SSDVOriginal Null Inv

a photo of Bill Gates (-glasses)

 Null Inv w/ SSDVOriginal Null Inv

a photo of Big Ben (-clock)

 Null Inv w/ SSDVOriginal

A photo of Big  Ben < EOT >

Figure 12. Suppression on Real Images. The leftmost image is the original real image, the middle image is the reconstruction obtained
using null-text inversion, and the rightmost image shows the result after content suppression using SSDV. Each image is annotated with the
input prompt, with the content to be suppressed shown in parentheses. The second row of images shows, via a token-wise attention map,
that the delta vector applied to the tokens e∗Big and e∗Ben captures the spatial regions where negative content potentially appears.



8.3. Style Suppression

To explore whether suppression is possible not only for strongly entangled objects but also for styles, we attempted to suppress
Vincent van Gogh’s style in paintings of Vincent van Gogh generated by Stable Diffusion. The paintings of Vincent van Gogh
are strongly entangled with his style, making it challenging to suppress in the generation process. As shown in Figure 13,
it appears that suppression of strongly entangled styles is achievable to some extent by our methods. In this experiment, the
delta was obtained using the zero-shot approach.

Café Terrace at Night by Vincent van Gogh

The Bedroom by Vincent van Gogh

Self-Portrait  by Vincent van Gogh

The Starry Night by Vincent van Gogh

Original Generated Image Suppression of  ‘Vincent van Gogh style’

Figure 13. Style suppression from images. The leftmost column shows the paintings of Vincent van Gogh generated by Stable Diffusion,
while the remaining columns display the results after suppressing Vincent van Gogh’s style in each image.

9. Details of User Study

To verify the effective suppression of negative content from a target object, we conducted a user study with 50 participants.
Participants were presented with the suppression results from our method and other existing methods and were asked to
choose the one that most effectively suppressed negative content. We also added some questions to the user study to confirm
that the optimization approach performs more effective suppression than the zero-shot approach. The interface of the user
study is shown as Figure 14. To ensure a fair comparison, the suppression results of all methods were generated using the
same seed. Additionally, all methods were tuned to achieve the best quantitative performance before selecting the samples
for comparison.



Based on the subjective judgment, please choose which of the images A, B, C, D, E, or F has the best 
suppression performance.

*For samples with similar suppression, please zoom in on the screen for a clear comparison!

Prompt: “A photo of Steve Jobs”
Suppression Content : glasses

a b c d e f

(a) (b) (c)

(d) (e) (f)

Prompt: “A photo of Shirt”
Suppression Content : Button 

a b c d e f

(a) (b) (c)

(d) (e) (f)

Figure 14. The user study interface.

10. Limitation
Our method has some limitations:
• Optimized-based approach takes approximately 30 seconds to optimize and requires the user to provide a mask for the

content to be suppressed. Consequently, suppression of elements such as “style” in a zero-shot approach is not feasible.
• The scale of hyperparameters that control the intensity of suppression should be heuristically adjusted for each image

sample and content to achieve optimal results.
• Our method is designed for U-Net architectures with cross-attention mechanisms. So, extending to transformer-based

models like DiT, which use self-attention and adaptive normalization, poses additional challenges and is left for future
work.

We believe that analyzing our approach to address its limitations will help guide future research on the problem of suppressing
negative content during the image generation process.
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