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A. Additional Ablations with Ground Plane
Methods

Additional Results. Table 6 presents a more detailed ab-
lation study of GEDepth [25], incorporating results from
additional training datasets. GVDepth consistently outper-
forms GEDepth across multiple training-test dataset combi-
nations. We do not report results on Argoverse and DDAD
datasets, as GEDepth failed to achieve satisfactory conver-
gence. We will provide further comments on this issue be-
low.

Furthermore, in Tab. 7, we provide results for
PlaneDepth [22] and GroCo [1], which utilize the ground
plane constraint in a similar manner as GVDepth. Since
these methods are self-supervised, we retrained PlaneDepth
with supervision, using the same backbone as our method.
The results suggest that the performance gap is not due
to difference in supervision or model complexity, but due
to the superior out-of-distribution generalization of our ap-
proach. For GroCo [1], we report the results from the origi-
nal paper, as it lacks the open-source code implementation.
However, GroCo is fundamentally a self-supervised version
of GEDepth [25], preserving all of its core principles.

Our main argument is that none of these methods are
explicitly designed to enhance generalization or facilitate
training with diverse perspective geometries. Moreover,
they improve performance only for road pixels, unlike the
proposed VCTC(·) that exploits the ground plane constraint
for all objects. In the following sections, we provide an in-
depth analysis, offering insights into the generalization and
convergence challenges faced by this methods.
Detailed Analysis. We start with the following premises,
which differentiate the proposed VCTC(·) from aforemen-
tioned approaches:

(i) Unlike GEDepth and GroCo, which utilize the
ground plane constraint only for road pixels, the pro-
posed canonical representation enables utilization of

Table 6. Comparison with GEDepth [25]. All models are trained
with equivalent setup and model complexity on KITTI, Driving-
Stereo and Waymo datasets. Best results are bolded, second best
are underlined. In-domain evaluation results are shaded .

Testing GEDepth[25] Vertical Fusion
dataset A.Rel ↓ δ1 ↑ A.Rel ↓ δ1 ↑ A.Rel ↓ δ1 ↑

K
IT

T
I

KITTI 5.68 95.4 5.70 95.5 5.67 95.7
DStereo 18.25 66.7 10.43 87.3 10.24 87.4
Waymo 22.11 69.1 13.42 78.6 14.34 78.4

Argo 19.27 52.8 14.72 64.7 10.45 84.8
DDAD 19.46 61.2 14.26 73.6 11.81 82.5

D
st

er
eo

KITTI 11.77 74.2 7.42 92.6 6.96 92.7
DStereo 2.99 99.5 3.07 99.5 3.01 99.5
Waymo 18.88 73.3 11.72 85.5 12.15 83.1

Argo 13.19 83.0 11.41 84.7 9.91 86.9
DDAD 20.20 55.18 15.71 80.0 12.02 82.4

W
ay

m
o

KITTI 15.91 82.1 8.30 92.3 10.92 89.8
DStereo 14.21 84.4 11.40 86.8 12.78 87.1
Waymo 3.42 99.0 3.61 98.9 3.51 98.8

Argo 17.83 83.4 12.21 88.6 9.62 94.1
DDAD 19.20 66.6 11.51 84.4 13.99 86.2

Table 7. Comparison with self-supervised methods that lever-
age the known ground plane. Results for KITTI → DDAD zero-
shot transfer.(†): Trained with supervision. (‡): Results taken from
corresponding paper.

Method A.Rel ↓ RMS ↓ RMSlog ↓ δ1 ↑
PlaneDepth† [22] 30.28 12.01 0.499 37.8
PlaneDepth [22] 32.71 14.77 0.529 37.9
GroCo‡ [1] 42.40 15.37 - -
Vertical† 14.26 9.39 0.271 73.6
Fusion† 11.81 8.35 0.251 82.5

vertical image position cue for all objects in the
scene;

(ii) Similarly, in constrast to GEDepth and GroCo, our
approach is inherently modeled to enable perspective
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Figure 9. Different approaches for incorporation of ground
plane constraint. In our approach, VCTC(·) serves as a point
of disentanglement, which enables learning of Vertical Canonical
Representation that is invariant to specific perspective geometry.
Linear combination used in GEDepth and GroCo does not hold
such properties, leading to limited generalization.

geometry disentanglement for all objects, resulting in
better out-of-distribution generalization.

While our extensive evaluation confirms this, here we also
provide insights into why GEDepth and GroCo fail to gen-
eralize across all objects in the scene.

Both GEDepth and GroCo formulate the problem of
depth regression D ∈ [0, Dmax]

H×W as a linear combi-
nation of the known ground depth DG ∈ [0, Dmax]

H×W

and the learnable residual depth DR ∈ [0, Dmax]
H×W ,

weighted by the learnable “ground attention” A ∈
[0, 1]H×W :

D = A⊙DG + (1−A)⊙DR. (1)

Through a straightforward analysis, we can notice why this
formulation enhances depth estimation for road pixels only.
First, any part of the scene appearing above the horizon
can not benefit from the induced perspective geometry con-
straint, as DG is invalid for those regions of the image.
Moreover, ground attention A is usually estimated with the
Sigmoid(·), which has a natural tendency to converge to
either 0 or 1 during optimization, leading to A effectively
being equivalent to road segmentation, as visualized in [1,
25]. Even for rare cases where this is not the case, the re-
sulting linear combination has an ambivalent geometric in-
terpretation chosen arbitrarily by the model. Our proposed
VCTC(·) is a simple and elegant solution for all of these
issues; it enables effective utilization of the ground plane
constraint for all image regions while preserving a clear ge-
ometric interpretation.

The same fundamental principles can be applied to per-
spective geometry disentanglement. While DG clearly dis-
entangles depth from camera parameters, the estimated DR

does not hold such properties, inducing generalization er-
rors due to the ambiguity of depth and camera parameters.
Since the final depth D is calculated as a linear combina-
tion, it is only fully disentangled where A is 1, which is
valid only for road pixels. On the other hand, VCTC(·)
is inherently designed to incorporate perspective geometry
disentanglement, regardless of the specific image region.
GEDepth Convergence Issues. GEDepth optimizes D
from Eq. (1) without additional regularization factors or ex-
ternal segmentation modules, claiming that the learned at-
tention map can automatically separate ground and other
regions. Unfortunately, in our experiments this occurred
rather inconsistently, and the learned attention map con-
verged to adequate ground segmentation only on the 19th
training experiment. In most cases, the model resorted to
estimating A = 0H×W , thus ignoring the provided ground
plane information and resulting in D = DR.
Final Remarks. We conducted a thorough evaluation that
highlights the extremely limited generalization capabilities
of models that rely on ground plane constraints [1, 22, 25].
While one might assume that these issues arise from lim-
ited reproducibility or incorrect convergence, the analysis
we presented in previous sections suggests that the root
cause lies in inherent design choices. These models are op-
timized to perform well only on narrow training distribu-
tion. Even within these constraints, improvements in accu-
racy are confined to road pixels, which are of limited rele-
vance for safety-critical applications. In contrast, the pro-
posed VCTC(·) elegantly addresses all these limitations.

B. Qualitative Results

Qualitative results for different model configurations are
shown in Fig. 10. All models demonstrate comparable capa-
bilities in reconstructing semantic objects, effectively cap-
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Figure 10. Qualitative ablation. Predicted depths and errors for DrivingStereo → {KITI, Waymo, DDAD} models. Baseline – standard
depth regression with geometric augmentations. Focal – depth regression via Focal Canonical Transform - FCTC(·). This is equivalent to
Metric3D[27], but trained on our setup. Vertical – depth regression via Vertical Canonical Transform - VCTC(·). Fusion – depth regression
with uncertainty-based fusion model.

turing object boundaries and overall scene layout. However,
error maps reveal that the Baseline model struggles to han-
dle the domain gap introduced by varying camera parame-
ters in the zero-shot transfer setting, leading to reduced ac-
curacy. Both the Focal and Vertical models perform reason-
ably well across most image regions, though they exhibit
noticeable modeling errors in certain areas. In contrast, the
Fusion model attains the highest accuracy by adaptively in-
tegrating the depth predictions from both Focal and Vertical
models.

C. Model Architecture
In this work, we employ a fully convolutional encoder-
decoder architecture with skip connections. While vision
transformer (ViT)-based encoders, such as DINOv2 [15],
often achieve superior accuracy, their advantages typically
rely on large-scale training. A similar fully convolutional
design is adopted in Metric3D [27], demonstrating the ef-
fectiveness of such models for generalizable monocular
depth estimation (MDE). Given our focus on single-dataset
training, we prioritize convolutional backbones to reduce
computational complexity while maintaining robust gener-
alization performance.
Decoder Architecture Details. Our decoder is designed
similarly as in Metric3D [27], consisting of four blocks that
progressively upsample and fuse encoder features from a
resolution of (H32 ,

W
32 ) to (H2 ,

W
2 ). Decoder channels di-

mensions are {756, 512, 256, 128}. Our fusion module pro-
cesses (H2 ,

W
2 ) resolution feature maps F with two compact

Image Vertical Canonical Representation

Figure 11. Vertical Canonical Representation regression. Vi-
sualization of regression boundaries of proposed Vertical Canoni-
cal Representation. We predict vertical image position of ground
plane projection in range [0, yMAX ]. Image is virtually extended
beyond bottom boundary to enable depth estimation for pixels with
ground-plane projection below camera field-of-view. For stabil-
ity reasons, regression is bounded to yMAX , which corresponds to
dMAX = 80.

U-Net-like networks [19], each containing 3 downsampling
and upsampling blocks, producing two final feature repre-
sentations. These feature representations are processed with
two convolutional blocks which predict our canonical rep-
resentations (CF,CY) and accompanying uncertainty es-
timates (ΣF,ΣY). After uncertainty-based fusion, final
depth map is bilinearly upsampled to (H,W ) resolution.
Vertical Canonical Representation details. For conve-
nience, we restate the equation used in Vertical Canonical
Transform VCTC(·):

d =
fyh

(H − cy − y) cos(θ)− fy sin(θ)
. (2)

Upon closer inspection, it becomes evident that mapping
y 7→ d can lead to unstable training if not properly regular-



ized. Specifically, at y corresponding to the horizon level
of a given camera setup, the depth d approaches infinity.
Furthermore, for any y above the horizon, the depth d be-
comes negative. To address this, as visualized in Fig. 11,
we bound the regression of y to yMAX , derived from the in-
verse mapping from dMAX = 80. Additionally, to accom-
modate depth regression for objects with ground-plane pro-
jections below the camera’s field of view, we virtually ex-
tend the image. In practice, this corresponds to increasing
H in Eq. (2) accordingly.

D. Model Complexity

Table 8. Model architecture details. Encoder architectures num-
ber of parameters and execution time for models used in this work.
Execution time is measured for resolution 416x640, on a single
NVIDIA RTX A6000 GPU.

Method Encoder Params # Execution time

Monodepth2 [9] ResNet-50 [12] 34M 12.70 ms
DIFFNet [29] HRNet-18 [21] 11M 29.42 ms

NeWCRFs [28] Swin-L [13] 270M 62.56 ms
iDisc [16] Swin-L [13] 208M 120.51 ms

PlaneDepth [22] ResNet-50 [12] 39M 15.21 ms

MiDaS [18] ResNeXt-101 [23] 105M 26.51 ms
LeReS [26] ResNet-50 [12] 52M 20.26 ms

ZeroDepth [11] ResNet-18 [12] 232M 238.48 ms
Metric3D [27] ConvNext-L [14] 203M 10.74 ms
UniDepth [17] ConvNext-L [14] 239M 55.34 ms

GVDepth ConvNext-L [14] 228M 21.24 ms

In Tab. 8 we present the architectural details of the mod-
els used in this work. While most results align with expec-
tations, there are a few notable outliers worth discussing.
First, ZeroDepth exhibits the highest inference times, de-
spite utilizing the least complex backbone among all meth-
ods. Essentially, ZeroDepth shifts complexity from the pre-
trained backbone to its proprietary self-attention layers in
the decoder. This trade-off limits its ability to fully leverage
the benefits of large-scale pretraining, which may explain
its subpar accuracy compared to UniDepth, Metric3D, and
GVDepth, even though it uses significantly more data dur-
ing training.

On the other hand, Metric3D achieves remarkably low
latency in depth prediction despite employing a relatively
complex backbone. This efficiency likely stems from pre-
dicting depths at a reduced (H4 ,

W
4 ) resolution, which is

subsequently upsampled to the original resolution Lastly,
GVDepth stands out for its lightweight design and low
inference time, even though it uses a relatively complex
backbone. Its impressive generalization performance is at-
tributed to our novel methodology rather than reliance on
model or data scaling. In future work, we will investigate

Table 9. Ablation of fusion strategies. Mean – fusion via mean of
FCTC(·) and VCTC(·). L1 – Uncertainty loss without aleatoric
uncertainty weighting in Lunc. All models are trained on Driving-
Stereo.

Configuration DrivingStereo KITTI Waymo
A.Rel ↓ δ1 ↑ A.Rel ↓ δ1 ↑ A.Rel ↓ δ1 ↑

Mean 3.05 99.4 8.21 91.1 14.01 82.8
L1 3.09 99.4 8.02 91.4 13.23 82.9

Fusion 3.07 99.5 6.96 92.7 12.15 83.1

more complex transformer architectures, which were costly
to train on our current computational setup.

E. Ablation of Fusion Strategy.
In Tab. 9 we examine the efficacy of different fusion strate-
gies. Zero-shot transfer results demonstrate that our adap-
tive fusion weighted by aleatoric uncertainties leads to su-
perior generalization performance.

F. Dataset Details
In this work, we use KITTI [8], DDAD [10], DrivingStereo
[24], Waymo [20] and Argoverse Stereo [3] datasets, both
for training and evaluation. For KITTI dataset, we evalu-
ate all models on commonly used Eigen split [6] with Garg
crop [7], resulting in 23158 training images and 652 testing
images. On DDAD dataset we use the official training and
validation split, with 12650 and 3950 images, respectively.
Since Waymo, DrivingStereo, and Argoverse Stereo are not
widely used for MDE evaluation, we simplify the process
by creating custom dataset splits. The resulting training
splits consist of {156K, 168K, 5K} samples, while the cor-
responding testing splits contain {5K, 5K, 500} samples,
respectively.

G. Camera setup calibration
In this section, we provide additional details about our cam-
era calibration procedure. Our proposed Vertical Canoni-
cal Transform VCTC(·), as indicated in Eq. (2), requires the
knowledge of camera parameters C = {fy, cy, h, θ}. Here,
for all datasets, fy and cy are usually known up to the rea-
sonable error induced by the calibration procedure. How-
ever, for certain datasets, camera height h and camera pitch
θ are either unknown, or not properly calibrated. To remain
consistent throughout this work, we recalibrate the extrin-
sic parameters for each dataset, with details provided in Al-
gorithm 1. For semantic segmentation of the road plane we
use the DeepLabv3 model [4].
Calibration results. Estimated camera height h and cam-
era pitch θ for each dataset are provided in Tab. 10. More-
over, in Fig. 12 we visualize the histograms obtained with
our calibration procedure. Since DrivingStereo [24] and



Algorithm 1 Estimate Camera Height h and Pitch θ.

Require: RGB images {Ii}Ni=1, ground-truth depth maps
{Di}Ni=1

Ensure: Median camera height hmedian and pitch θmedian
1: Initialize empty sets H = ∅, Θ = ∅
2: for i = 1 to N do
3: Run semantic segmentation model on Ii to acquire

road pixels Pi

Pi = {(u, v) | (u, v) belongs to the road in Ii}

4: Extract depths {Di(u, v) | (u, v) ∈ Pi}
5: Filter road pixels based on depth:

Pfiltered
i = {(u, v) ∈ Pi | Di(u, v) < 20}

6: Project filtered road pixels to 3D points:

Qi =


X
Y
Z

∣∣∣∣∣
X =

(u− cx)Z

fx
,

Y =
(v − cy)Z

fy
,

Z = Di(u, v)

,∀(u, v) ∈ Pfiltered
i


7: Fit Ri(θi) (rotation matrix) and hi (camera height)

to Qi with RANSAC plane estimation
8: Append hi to H and θi to Θ
9: end for

10: Compute median camera height and pitch:

hmedian = median(H), θmedian = median(Θ)

11: return hmedian, θmedian

Table 10. Camera calibration. Camera extrinsics estimated by
the calibration procedure described in Algorithm 1.

Dataset h[m] θ[°]

Argoverse Stereo [2] 1.678 0.021
DDAD [10] 1.459 -0.519

DrivingStereo [24] 1.739 -0.561
KITTI [8] 1.659 -0.664

Waymo [20] 2.145 -0.331

KITTI [8] do not report extrinsic parameters, we use the es-
timated values in our proposed canonical transform. Fur-
thermore, for the DDAD dataset [10], we observe a signifi-
cant discrepancy between the official and estimated extrin-
sics. Therefore, we use our calibrated parameters, as they
align more closely with the ground-truth depth. In contrast,
for Argoverse Stereo [2] and Waymo [20], the estimated
values are consistent with the official calibration.
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Figure 12. Calibration histograms. Height and pitch histograms
acquired by calibration procedure described in Algorithm 1. Best
viewed zoomned in.

KITTI Calibration Issues. We would also like to address
the problems with KITTI calibration. As shown in Fig. 12,
the pitch histogram for the KITTI dataset does not follow an
unimodal distribution. We believe that this highlights incon-
sistencies in the official KITTI intrinsics calibration across
different recording sequences. While this observation is not
novel [5], it is rarely, if ever, discussed in the context of
MDE. Given that the KITTI dataset remains a cornerstone
for MDE evaluation, we believe that this issue should be
given increased attention.
Evaluation with Per-frame Calibration. Our per-frame
calibration procedure offers potentially higher accuracy
than median-filtered results. This is because it better cap-



Table 11. Evaluation with per-frame extrinsics calibration.
Vertical – depth regression via Vertical Canonical Transform -
VCTC(·). Fusion – depth regression with fusion model. Vertical+
and Fusion+ indicate usage of per-frame camera extrinsic calibra-
tion during evaluation. Training datasets on rows, testing datasets
on columns. Best results are bolded. In-domain evaluation results
are shaded .

Representation KITTI DrivingStereo
A.Rel ↓ RMS ↓ δ1 ↑ A.Rel ↓ RMS ↓ δ1 ↑

K
IT

T
I Vertical 5.70 2.58 95.5 10.43 5.42 87.3

Vertical+ 5.72 2.62 95.6 10.45 5.46 87.1
Fusion 5.67 2.61 95.7 10.24 5.66 87.4
Fusion+ 5.61 2.60 95.8 10.22 5.60 87.5

D
St

er
eo Vertical 7.52 3.33 92.6 3.07 1.75 99.5

Vertical+ 7.31 3.28 92.7 2.78 1.61 99.6
Fusion 6.96 3.17 92.7 3.01 1.76 99.5
Fusion+ 6.85 3.15 92.7 2.91 1.74 99.6

tures ground plane perturbations and vehicle dynamics,
which cause slight variations in camera pitch. In Tab. 11,
we present evaluation results using per-frame calibration.
While this approach leads to slight performance improve-
ment, the gain is marginal, possibly due to the noise in our
calibration process. Although such additional information
about vehicle dynamics and perturbation could theoretically
be integrated into a real system using localization with vi-
sual odometry or sensor fusion, we exclude these results
from the main paper since competing methods do not lever-
age this information.
Calibration Sensitivity. Models involving canonical map-
ping via VCTC(·) are inherently sensitive to inaccuracies
in camera extrinsic parameters. In Fig. 13, we evaluate the
A.Rel metric for our Vertical and Fusion model configura-
tions under varying levels of Gaussian noise in the extrinsic
parameters.

While both models exhibit sensitivity to calibration
noise, the Fusion model demonstrates a smaller error in-
crease due to its uncertainty-based fusion with depth from
FCTC(·). However, the Fusion model’s error still in-
creases under noisy conditions, indicating that its uncer-
tainty prediction does not fully compensate for inaccuracies
in camera calibration. This is expected, as camera calibra-
tion directly affects the canonical mapping performed by
VCTC(·) and is not internally estimated by the model.

H. Additional Considerations

Multi-dataset Training. Almost all challenges in multi-
dataset training for MDE arise from inconsistent and am-
biguous perspective geometries, making our approach in-
herently scalable due to the invariance introduced in canoni-
cal spaces. While we lacked the computational resources to
scale the training to the level of a MDE foundation model,
in Tab. 3 in main text we demonstrated our method’s abil-
ity to leverage diverse perspective geometries in the training
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Figure 13. Calibration sensitivity. Sensitivity to Gaussian noise
perturbations in extrinsic parameters evaluated on KITTI dataset.
Vertical – depth regression via Vertical Canonical Transform -
VCTC(·). Fusion – depth regression with fusion model. Train/test
dataset combination for both models is DrivingStereo → KITTI.

data induced by geometric augmentations, especially com-
pared to the Baseline.

Flat Ground Assumption. Our method implicitly assumes
the ideal ground plane within the VCTC(·). Unlike in
GEDepth [25], which explicitly models the ground slope,
we choose to grant the model greater flexibility. Motivation
behind this choice is straightforward; our proposed canoni-
cal transformation is designed to assist the model in resolv-
ing ambiguities that diverse training data alone cannot, such
as the entanglement of depth and camera parameters. For
other adversarial perturbations, like ground plane imperfec-
tions, we do not explicitly model them. Instead, we al-
low the model to internally adjust values in canonical space
when it detects these perturbations within highly diverse
training data. Moreover, the uncertainty-based fusion pro-
vides the model with additional capabilities to adaptively
weight cues based on aleatoric uncertainty, enabling the
down-weighting of specific cue in highly uncertain regions.
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