
Table 3. Evolution of example queries for three different initialization methods: K-LLM, K-Random, and K-Medoids. The table shows
how the queries progress from the initial state, through a mid-training checkpoint, to the final post-training result.

Initialization Mid-Training Post-Training
Initialization Method: K-LLM

reins mustang zebra stripes shining
wide mouth feeding mouth freight maul
driver driver on the road van on the road

Initialization Method: K-Random

wood or gas fueled large antelopes horns blaring
photo-shop edits flight stripes grey feathers
travel distance horns sound body with horns

Initialization Method: K-Medoids

lighting strike zebra stripes striped manes
ceiling beam vintage sedan station wagon body
knee bending motion large animal moving tractor trailer rig

A. Proof
In the following we provide the proof for Proposition 1.

Proof. First, we split the minimization between the dictionary parameters and V-IP network parameters:

min
✓, ,⌘

JQ✓ (, ⌘) = min
✓, ,⌘

E
X,S

[`Q✓, ,⌘(X,S)] (26)

= min
✓

min
 ,⌘

E
X,S

[`Q✓, ,⌘(X,S)] . (27)

Then we use that the cardinality of sampled query-answer histories S is uniformly distributed:

min
✓

min
 ,⌘

E
X,S

[`Q✓, ,⌘(X,S)] = min
✓

min
 ,⌘

1

K

K�1X

⌧=0

E
X,S: |S|=⌧

[`Q✓, ,⌘(X,S)] . (28)

Finally, we apply Proposition 1 from [5], which says that an optimal V-IP querier returns the IP queries and an optimal V-IP
classifier equals the true posterior:

min
✓

min
 ,⌘

1

K

K�1X

⌧=0

E
X,S: |S|=⌧

[DKL (P (Y | X) kP (Y | S,A⌘ (X,S)))] (29)

= min
✓

1

K

KX

⌧=1

E
X

h
DKL

⇣
P (Y | X) kP

⇣
Y | ExplIP⌧

Q✓
(X)

⌘⌘ i
(30)

B. Classifier and Querier Network Architecture
The classifier and querier architecture is a two-layer, fully connected neural network. Figure 5 illustrates the architecture
with a diagram. The size of the query dictionary only affects the final output dimension of the querier g⌘ , while the number
of class labels only affects the final output dimension of the classifier f . We never share the weights between the classifier
and the querier networks. We apply a softmax layer to the class and query logits to obtain probabilities for each class and
query, respectively. During training, we employ a straight-through softmax [3] for the querier network.

Dataset Budget ⌧ Full Method w/o Query Answer Quantization w/o Query Quantization
RIVAL-10 10 98.73% 99.49% 99.62%
CIFAR-10 10 95.12% 96.92% 97.42%
CIFAR-100 50 75.20% 82.45% 79.93%
ImageNet-100 50 83.99% 87.73% 84.92%
CUB-200 100 74.52% 81.65% 77.54%
Stanford-Cars 100 82.39% 87.20% 82.06%

Table 4. Ablation study comparing accuracy at fixed query budget of our full method (K-Learned) to variants without query answer
quantization and query quantization. All runs use K-LLM to initialize the learnable dictionary. Quantization of query answers and queries
improves interpretability while widening the gap to black-box methods.

Q(x) · M M

Linear 2000 Linear 2000

Linear 500 Linear 500

Linear 1000

Class Logits

Concatenated

Shared

Shared

(a) Classifier Architecture f

Q(x) · M M

Linear 2000 Linear 2000

Linear 500 Linear 500

Linear 1000

Query Logits

Concatenated

Shared

Shared

(b) Querier Architecture g⌘

Figure 5. Diagram of the neural network architecture for (a) classifier f and (b) querier g⌘ . “Shared” indicates that two linear layers share
weights. “Concatenated” implies the output from previous layers is concatenated. Every arrow ! before the concatenation and after the
input layer applies a LayerNorm, followed by ReLU. In the forward pass of g⌘ , we convert the query logits into a one-hot encoding with a
straight-through softmax.

C. Representing and Updating Query-Answer Histories

In V-IP, the input to the classifier f and querier g⌘ is a query-answer pair history S of variable length. Following the original
V-IP work [5], we represent the history S for a sample x, as a binary mask M and Q(x)�M , where � denotes the Hadamard
product. If history S contains the i-th query-answer pair, then Mi = 1, otherwise Mi = 0.

Suppose S(k) denotes a history of k query-answer pairs for x and M
(k) is the associated binary mask, then we can update

the history with a new query using the querier g :

M
(k+1) = M

(k) + g⌘(S
(k)), (31)

S
(k+1) = S

(k) +Q(x)� g⌘(S
(k)). (32)

In particular, g⌘ returns a one-hot encoding to select the next query. We use a straight-through softmax layer on the query
logits to backpropagate gradients through g⌘ .

D. Training Details
For the baseline K-LLM dictionary, we follow the training schedule from [5] to train the V-IP querier and classifier networks
with a fixed dictionary. For all datasets, we train the querier and classifier parameters jointly for 1500 epochs, starting
with random sampling for query histories, followed by 1500 epochs of biased sampling, using the fixed K-LLM dictionary.
We train our K-Learned dictionary with alternating optimization using t = 4 as the ratio of V-IP network to dictionary
updates. For all datasets, we then train first for 800 epochs with random sampling for query histories, followed by 800
epochs using biased sampling. For the ablation study we train K-Learned with joint gradient updates in dictionary, querier,
and classifier parameters, starting with 1500 random sampling epochs, followed by 1500 biased sampling epochs. Throughout
all experiments we use Adam [16] as the optimizer with a learning rate of 1e-5 (other parameters use the default PyTorch
values). We apply the straight-through estimator [3] in two places: (1) to backpropagate through the binarization of query
answers in Eq. (25) and (2) to backpropagate through the nearest-neighbor operation in the query parameterization in Eq. (18).
Hyperparameters were tuned on the AUC of validation accuracy as a function of the query budget, i.e., the AUC of the curves
in Fig. 3. During training we validate the AUC every 10 epochs and compare models at the best validation accuracy. In the
ablation experiments we initialize our method with the K-LLM dictionary.

E. Query Universe Construction
In our experiments, U is formed as the union of all K-LLM dictionaries across tasks, supplemented by a generic query set,
which is generated by prompting LLaMA-3B [13] with image captions from the COCO dataset [20], requesting 20 visual
queries per caption. The prompt template for the COCO caption queries is shown below:

You receive as input an image caption.
You will output text snippets describing visual concepts that could
be present in the image.

I will give you two examples with the format I want you to use.

For example for the caption
"a group of zebras grazing in the grass"
you might output:

1. Stripes
2. Mammal
3. Tails
4. Four legs
5. Horizon line
6. Trees in the background
7. Grazing movement
8. Dust kicked up by movement
9. Wildlife in the background
10. Footprints in the grass
11. Blue sky

For example for the caption
"three airplanes sitting on top of an airport tarmac"
you might output:

1. jet engine
2. cloudy sky
3. wing
4. airport terminal

Each output element represents a"visual concept" that could be
present in the image.
I will further give you examples of "good" and "bad" visual
concepts.

Good visual concepts:
1. natural scenery
2. vegetable basket
3. hoofed animal
4. four-legged animal
5. brown coat
6. long legs
7. animal with horns
8. long neck
9. four-wheeled vehicle
10. flying object
11. stop sign
12. person riding vehicle
13. person riding horse
14. farm
15. barn
16. glass
17. metal
18. red color
19. blue color
20. green color
21. yellow color
22. car seat
23. urban scenery
24. flowing water
25. rainy weather
26. parking lot
27. wildlife
28. small animal
29. large animal
30. open road
31. city street
32. stairs
33. table with food
34. plate with food
35. traffic
36. long ears
37. textured surface
38. shiny surface
39. shiny object
40. shiny metal
41. city skyline
42. twigs and leaves

Bad visual concepts with explanations:
1. plane lights or navigation lights -> don't use "or"
2. office decor (walls, flooring, etc.) -> don't use "()"
3. different zebra patterns -> be concise and use zebra pattern

Please avoid "or" in your output as well as "()" in your output.
Keep the output concise and to the point and do not use more than
5 words per visual concept.

Only output the elements, no other text. Use the format
from the examples above.
Output maximum {} visual concepts per caption.

If a caption is inappropriate due to
violence or sexual content, output INAPPROPRIATE.

	Introduction
	Related Work
	Background
	Information Pursuit
	Variational Information Pursuit
	Sparse Dictionary Learning

	K-Learned Queries for Information Pursuit
	Method
	Connections to sparse dictionary learning
	Implementation
	Experiments

	Limitations
	Conclusion
	Proof
	Classifier and Querier Network Architecture
	Representing and Updating Query-Answer Histories
	Training Details
	Query Universe Construction

