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A. Optimization of pretrained uncertainties
Loss prediction provides a general approach for uncertainty
estimation, as any task’s level of wrongness can be defined
by its loss Ltask. In loss prediction tasks, an uncertainty
module u is added after the representation layer of a stan-
dard supervised encoder, predicting the corresponding loss
for each sample. Specifically, u is implemented as a small
MLP head, on top of the model’s representation e(x) and is
trained using an L2 loss between u and the task loss Ltask.
The main supervised task is learned together with the un-
certainty module, using the objective:

L = Ltask(y, f(x)) + (u(e(x))� Ltask(y, f(x)))
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Kirchhof et al. [31], adapted the loss prediction approach
to develop pretrained uncertainties, introducing some modi-
fications. Particularly, they propose two methods to perform
the prediction task. First, they apply a stop-gradient mecha-
nism before the uncertainty module to enable parallel train-
ing ensuring that its gradients do not affect the supervised
classifier. Second, they pretrain the large-scale supervised
classifier and extract its representations. The uncertainty
module is trained on top of these frozen representations,
enhancing computational efficiency. Since the task loss de-
pends only on the representations, they can be cached once,
accelerating training. In this study, we adopt the second ap-
proach.

Moreover, instead of relying on the L2 which is inher-
ently tied to the scale of the supervised task loss, a ranking-
based objective is introduced. This objective ensures that
uncertainty values remain consistent across different tasks
and loss scales. The ranking-based loss is defined as:

L = max(0, L(u(e(x1))� u(e(x2)) +m)),

s.t. L =

⇢
+1, if Ldet

task(y1, f(x1)) > Ldet
task(y2, f(x2))

�1, else

L is the indicator function, taking a value of +1 if the
examined sample has higher task loss than a randomly se-
lected sample in the batch, and �1 otherwise. During train-
ing the uncertainty values are adjusted accordingly, ensur-
ing that the sample with higher task loss receives a higher
uncertainty value, enforced by a margin of m. Following
[31], we set m = 0.1.

B. Visual examples of Semantic Factors
In this section, we visually inspect the variability induced
by the semantic factors defined in Sec. 3.2. Figure 10 high-
lights the variability induced by varying the GSD (SF1).

(a) GSD: 20cm per pixel (b) GSD: 10m per pixel

Figure 10. Example of variability induced by the GSD (SF1).

(a) Land-focused scene. (b) Marine-focused scene.

Figure 11. Example of the impact of the domain of interest (SF2).

(a) Target: Forest type. (b) Target: Tree species.

Figure 12. Example of variability in target granularity (SF3).

(a) Mountainous forest area. (b) Urban area.

Figure 13. Example of the impact of spatial arrangement (SF4).

Figure 10a presents a sample from the FLAIR dataset at
20cm per pixel, depicting a suburban area with fine de-



tail, while Fig. 10b shows a sample from the BigEarthNet
dataset at 10m per pixel, capturing coarser objects such as
a forest. Figure 11 showcases the impact of the domain
of interest (SF2) in EO scenes, presenting a sample from
MLRSNet focused on land cover (Fig. 11a), and a sample
from the MARIDA dataset (Fig. 11b), which focuses on ma-
rine environments. Clearly, the objects existing in these two
domains differ significantly. Similarly, Fig. 12 shows the
impact of the target granularity, highlighting the visual dif-
ference of high-level targets like forests (Fig. 12a), which
require less detail to identify, and low-level targets like tree
species (Fig. 12b) that demand the highest possible level of
detail.

Notably, as seen in the images, some SFs are highly in-
terdependent; e.g., GSD (SF1) influences target granularity
(SF3), as spatial resolution dictates the level of available
detail.

C. Uncertainty Representation Metrics
LA@1 for multi-label classification: Consider a sample x

and its nearest neighbor in the representation space denoted
as x⇤. Let their class vectors be c, c⇤ 2 {0, 1}K , where K

is the number of classes. Each element in the class vectors
indicates the presence (1) or absence (0) of a given class. In
the context of multi-label classification, we define 3 metrics:
One-LA@1 assesses whether x and x

⇤ share at least one
common class and is defined as follows:

One-LA@1 = I
�
c>c⇤ > 0

�
,

where I is the indicator function, that equals 1 if the condi-
tion is true, and 0 otherwise.
All-LA@1 is a stricter criterion enforcing x

⇤ to contain all
classes present in x. Formally:

All-LA@1 = I
�
c>c⇤ = kck1

�
,

where kck1 denotes the sum of the elements in the class
vector c.
%-LA@1 quantifies the proportion of classes of x

⇤ that
match the classes of x:

%-LA@1 =
c>c⇤

kck1
This metric provides a balance between One-LA@1,

which may be too lenient, and All-LA@1, which can be
too strict.

LA@1 for semantic segmentation: In the context of
semantic segmentation, labels are represented as matrices
C,C⇤ 2 Rm⇥n, where m and n denote the height and
width of the image respectively, and each element in the
matrix corresponds to one of the K possible classes. To
capture different notions of semantic similarity in segmen-
tation tasks, we introduce 4 metrics:

All-LA@1 is a high-level metric, assessing whether the set
of classes is shared between the images. The class vectors
c, c⇤ 2 {0, 1}K are calculated, where each entry indicates
the presence or absence of the respective class in the image.
The metric is calculated as in the multi-label scenario:

All-LA@1 = I
�
c>c⇤ = kck1

�

Patchesp-LA@1 evaluates the spatial similarity between x

and x
⇤. Each image is divided into a p⇥ p grid of patches.

For each patch, the majority class is identified, resulting in
two matrices M,M⇤ 2 ZP⇥P . Then, the metric computes
whether corresponding patches in the two images share the
same majority class:

Patchesp-LA@1 = I
�
Mp = M⇤

p

�

This metric evaluates the spatial similarity between the im-
ages, by capturing the spatial alignment of their classes. In
our study, we set p = 3 to capture high-level context, but
this can be adjusted depending on the task’s requirements.
Probability Distance of LA@1 (PD-LA@1) measures the
contextual similarity between x and x

⇤, by comparing the
class distributions across the entire image. The distributions
p,p⇤ 2 [0, 1]K represent the percentages of each class in
samples x and x

⇤ respectively, and the metric is calculated
as:

PD-LA@1 = 1�HD(p,p⇤),

where HD is the Hellinger Distance HD(x, y) =q
1
2

PN
i=1

�p
xi �

p
yi

�2
, which measures the similarity

between two probability distributions. This metric is used to
measure the contextual similarity between the two images,
regardless of the spatial position of the classes.
Patchesp Probability Distance of LA@1 (Patchesp-PD-
LA@1) combines the spatial focus of Patchesp-LA@1 with
the contextual similarity of PD-LA@1. The image is di-
vided into a p ⇥ p grid of patches and for each patch
i, j 2 {1, . . . , p}, the class distributions pij and p⇤

ij are
calculated. The HDij is then calculated for each i, j, and
the final metric is the average of these distances across all
patches:

Patchesp-PD-LA@1 = 1� 1

P 2

PX

i=1

PX

j=1

HDij .

This metric captures both the spatial and contextual simi-
larities between the two images, offering a comprehensive
view of how well the two images align, both in terms of
pixel position and overall structure.

The LA@1 for a dataset is calculated as the mean LA@1
across its samples. Binary LA@1 metrics (One-LA@1,
All-LA@1, Patchesp-LA@1) quantify the percentage of



representations whose nearest neighbor is semantically sim-
ilar. In contrast, PD-LA@1 and Patchesp-PD-LA@1 rep-
resent mean probability distances, while %-LA@1 reflects
mean proportions. This emphasizes that the values of the
metrics are not directly comparable, as they measure differ-
ent elements.

D. Coefficient of Predictive Ability (CPA)
Traditional ROC analysis is designed for binary classifica-
tion tasks. The Universal ROC (UROC) curves and the
associated Coefficient of Predictive Ability (CPA) extend
this framework to any linearly ordered outcome, including
binary, ordinal, mixed discrete-continuous, and continuous
variables, thereby generalizing ROC analysis [18].

Generalizing the binary setting, the problem is trans-
formed into a sequence of binary classification tasks. Given
bivariate data (xi, yi) for i = 1, . . . , n, where xi represents
a predictor and yi a continuous outcome, m unique values
of yi z1 < · · · < zm with m < n are defined.

To construct the UROC framework, the real-valued
outcomes are converted into binary indicators {y1 �
✓}, . . . {yn � ✓} for threshold values ✓ 2 {z2, . . . , zm}.
This results in m� 1 derived binary classification problems
of the form

(xi, 1{yi � zc+1}), c = 1, . . . ,m� 1.

Each of these m � 1 binary classification problems ad-
mits a standard ROC curve, which can be sequentially visu-
alized as a ”ROC movie.” To summarize these ROC curves
into a single representation, the UROC curve is defined as a
weighted average of the individual ROC curves, providing a
unified representation of predictive performance across con-
tinuous outcomes.

The CPA, defined as the area under the UROC curve,
serves as a generalization of AUROC for continuous out-
comes. Particularly, CPA is a weighted average of the AU-
ROC values for the derived binary problems in the very
same way that the UROC curve is a weighted average of the
classical ROC curves that constitute the ROC movie. No-
tably, in the case of strictly binary outcomes, CPA reduces
to AUROC, preserving interpretability within the classical
ROC framework.

For further details, we refer the reader to the original
work by Gneiting et al. [18].

E. Discard Test
The Discard Test is a diagnostic tool used to assess the qual-
ity of a model’s uncertainty estimates by iteratively remov-
ing the most uncertain predictions from a test set and mea-
suring the resulting change in model error. The fundamen-
tal principle behind this test is that if a model’s uncertainty
estimates are reliable, the most uncertain predictions should

correspond to higher errors, thus removing them should lead
to an improvement in overall model performance. The exact
steps of the test are the following:
1. Model predictions are ranked in descending order based

on their associated uncertainty estimates.
2. The ranked samples are divided into equal-sized batches

according to a predefined discard fraction.
3. The most uncertain batch is removed from the set.
4. The model’s error is recalculated on the remaining test

samples.
5. Steps 3–4 are repeated iteratively until all samples have

been discarded.
This process generates a curve that visualizes how the

model error changes as more uncertain predictions are ex-
cluded. An effective uncertainty estimation method should
result in a monotonically decreasing error curve, indicating
that the most uncertain samples also tend to have higher er-
rors. Deviations from these trends, such as non-monotonic
error curves, suggest that the uncertainty estimates are not
fully reliable, as removing uncertain predictions does not
consistently enhance model performance. In this study, we
use 200 discard fractions, so the steps are repeated 200
times for each dataset and pre-trained model. Moreover,
we use the model loss as a measure of error.

The results are accompanied by the provision of Mono-
tonicity Fraction (MF). MF measures how often model per-
formance improves as more uncertain samples are discarded
and is computed as:

MF =
1

Nf � 1

Nf�1X

i=1

(✏i � ✏i+1),

where is the indicator function, and ✏i is the model error
(here the loss) at discard fraction i. Nf denotes the total
number of discard fractions considered. An MF value of 1
indicates perfect monotonicity. An ideal uncertainty estima-
tion method would yield a high MF (indicating consistent
performance improvement).

F. Overview of the experimental design
Table 2 summarizes the experimental design employed to
evaluate the generalization of representation uncertainty.
The table offers detailed references to the relevant investi-
gation targets and the sections, figures, models, and dataset
configurations that support each case, thereby facilitating
traceability of the experiments.

G. Uncertainty Module training details
The uncertainty module was implemented as an MLP with
two hidden layers, applied on top of the learned representa-
tions. Each linear layer is followed by a LeakyReLU activa-
tion, and the final layer uses a Softplus activation to ensure



Investigation Target Section Figure Model Pretraining Datasets Inference Datasets

Impact of SF1 Sec. 4.2 Fig. 4 ViT-Large BigEarthNet All

Impact of SF1 Sec. 4.2 Fig. 5 ViT-Large BigEarthNet Flair

Impact of SF2 Sec. 4.1 Fig. 2 All ImageNet, BigEarthNet, Flair MARIDA

Impact of SF3 Sec. 4.2 Fig. 2 All BigEarthNet-5 All

Impact of SF4 Sec. 4.2 Fig. 2 All BigEarthNet-5 All

Usefulness of uncertainties Sec. 4.3 Fig. 6 ViT-Large ImageNet, BigEarthNet, Flair All

Usefulness of uncertainties Sec. 4.3 Fig. 7 ViT-Large ImageNet, BigEarthNet, Flair Flair

Localized Uncertainty Sec. 4.4 Fig. 8 ViT-Large BigEarthNet Flair, MARIDA

Noisy Data Sec. 4.5 Fig. 9 All ImageNet, Flair BigEarthNet, noisy BigEarthNet

Table 2. Overview of the experiments conducted in this study. Each investigation target is accompanied by references to the relevant
sections, figures, models, and the corresponding pre-training and inference datasets used.

Figure/Table Pretraining Dataset Input Res. Model unc width weight decay modality

Fig. 2 BigEarthNet 120

ViT-Tiny 512 0.1 RGB
ViT-Small 512 0.1 RGB
ViT-Base 512 0.1 RGB
ViT-Large 512 0.1 RGB

Tab. 4 BigEarthNet 120

ViT-Tiny 512 0.1 SAR
ViT-Small 512 0.1 SAR
ViT-Base 512 0.1 SAR
ViT-Large 512 0.1 SAR

Tab. 4 BigEarthNet 120

ViT-Tiny 512 0.1 MS
ViT-Small 512 0.1 MS
ViT-Base 512 0.1 MS
ViT-Large 512 0.1 MS

Fig. 2 BigEarthNet-5 120

ViT-Tiny 256 0.01 RGB
ViT-Small 512 0.1 RGB
ViT-Base 512 0.01 RGB
ViT-Large 512 0.1 RGB

Fig. 2 Flair 120

ViT-Tiny 256 0.5 RGB
ViT-Small 256 0.5 RGB
ViT-Base 256 0.5 RGB
ViT-Large 256 0.5 RGB

Fig. 4 BigEarthNet 60 ViT-Large 512 0.5 RGB
Fig. 4 BigEarthNet 30 ViT-Large 512 0.01 RGB
Fig. 4 BigEarthNet 16 ViT-Large 512 0.1 RGB

Table 3. Model configurations and settings used for training the uncertainty modules. The ”Figure/Table” column indicates the correspond-
ing figure or table in the main text or supplementary material associated with each experiment.

Metric Modality
ViT - Tiny ViT - Small ViT - Base ViT - Large

LA@1 LA-CPA LA@1 LA-CPA LA@1 LA-CPA LA@1 LA-CPA

One
RGB 0.995 0.429 0.996 0.437 0.997 0.427 0.998 0.544
SAR 0.975 0.435 0.978 0.427 0.979 0.403 0.981 0.418
MS 0.996 0.402 0.997 0.366 0.997 0.431 0.997 0.353

All
RGB 0.526 0.657 0.592 0.646 0.664 0.616 0.716 0.607
SAR 0.397 0.665 0.42 0.659 0.463 0.641 0.463 0.641
MS 0.558 0.650 0.63 0.632 0.609 0.613 0.723 0.615

%
RGB 0.796 0.607 0.827 0.596 0.857 0.569 0.88 0.575
SAR 0.714 0.600 0.727 0.595 0.748 0.582 0.748 0.582
MS 0.815 0.600 0.845 0.583 0.834 0.571 0.885 0.562

Table 4. LA@1 and LA-CPA for Multispectral (MS), Synthetic Aperture (SAR) and RGB data for BigEarthNet pretraining and inference.

the uncertainties remain positive, as described in the origi-
nal paper. The uncertainty width unc width, i.e. the width
of the linear layers, is set to either 256 or 512, tuned individ-

ually for each model. A full overview of the hyperparame-
ters used across all experiments can be found in Tab. 3.

Our models were trained for 1000 epochs in each config-



Figure 14. Performance evaluation of LA@1 for all ViT variants and inference datasets across all LA metrics, with higher values repre-
senting better performance. Colors indicate different pre-training datasets. EO-pretrained models and ImageNet pre-trained models show
comparable behavior.

Dataset Modality ViT - Tiny ViT - Small ViT - Base ViT - Large
micro F1 (%) macro F1(%) micro F1 (%) macro F1(%) micro F1 (%) macro F1(%) micro F1 (%) macro F1(%)

BigEarthNet
RGB 73.25 59.65 73.78 61.94 73.19 60.11 73.32 60.81
SAR 68.48 54.76 68.33 55.92 68.30 55.80 68.94 55.28
MS 74.32 62.13 73.92 62.36 74.20 62.28 74.22 62.36

BigEarthNet-5 RGB 84.19 60.67 84.73 81.61 84.21 70.93 84.10 81.07

Flair RGB 85.21 57.62 85.87 59.54 85.20 59.23 85.78 58.97

MLRSNet RGB 91.50 92.37 91.91 98.45 91.45 98.35 98.46 91.94

Table 5. Performance of supervised models whose representations were used for training the uncertainty modules that were used for
creating Fig. 2 of the main text and Fig. 14 of SM.

Input Res. Modality micro F1 (%) macro F1(%)

120 RGB 73.78 61.94

60 RGB 70.54 57.74

30 RGB 66.00 52.06

16 RGB 60.26 44.58

Table 6. Performance of supervised models whose representa-
tions used for training the uncertainty models under varying GSD.
These models refer to Fig. 4 of the main text.

Dataset Modality micro F1 (%) meanIOU (%)

Flair RGB 72.59 56.98

Marida RGB 99.17 98.35

Waititu RGB 84.20 72.72

Woody RGB 93.45 87.71

Table 7. Performance of U-Net, with a ResNet-50 backbone,
trained via supervised learning for semantic segmentation tasks.
The alignment of zero-shot uncertainties was assessed with the
losses of these models. They refer to Fig. 6 of the main text.



uration. The learning rate was warmed up with a constant
value of 0.0001 for 50 epochs and then decayed to 1e�8 for
the remaining epochs. Weight decay was tuned separately
for each model. AdamW was used as the optimizer with
�1 = 0.8 and �2 = 0.95. No augmentations were applied
during the training of the uncertainty module.

H. Multispectral & Synthetic Aperture Radar
Data Pretraining

In the main text, we evaluated our framework’s results us-
ing only the RGB channels to ensure a fair comparison with
models pretrained on RGB optical data and to accommo-
date datasets with diverse spectral characteristics extending
beyond RGB. However, recognizing the importance of ap-
plications beyond the RGB spectral bands, we also pretrain
models on MS and SAR data and publicly release the pre-
trained weights. These models are pretrained on BigEarth-
Net, a dataset with both MS and SAR modalities, and their
performance is evaluated on the same dataset, facilitating
the comparison with the RGB training setup. In Tab. 4, we
report the results of this evaluation. While LA@1 is consis-
tently better for MS and RGB modalities compared to SAR,
the LA-CPA is slightly better in SAR modalities, especially
in larger models (ViT-Base, ViT-Large). This is a prelimi-
nary indication that our framework can effectively extend to
other setups, yet further examination on additional datasets
and setups is necessary to test the uncertainty generalization
and draw a more definitive conclusion.

I. LA@1 across datasets
Figure 14 summarizes the LA@1 results across different
metrics, similar to Fig. 2, which presents the LA-CPA re-
sults discussed in the main text. As highlighted in the main
text, LA@1 remains consistent across models irrespective
of the pre-training dataset, with ImageNet feature extrac-
tors producing robust representations that yield LA@1 val-
ues comparable to those trained on EO datasets.

J. Visualization of Samples with High/Low un-
certainty

Figure 16 presents samples with high/low uncertainties
across all datasets, as estimated by ViT-Large pretrained
on Flair, providing a qualitative perspective on the perfor-
mance of pretrained uncertainties.

K. Pretrained supervised models
In this section, we provide an overview of the performance
of the supervised models used as backbone networks in our
study. These models were used to extract the representa-
tions for training the uncertainty modules and to create the
discard test plots. In Tab. 5, we summarize the results for

Figure 15. Densities of pretrained uncertainties, generated from a
ViT-Large pretrained on BigEarthNet.

the pretrained models used for creating Fig. 2 of the main
text and Fig. 14 in the SM. The performance of the mod-
els used to investigate the impact of GSD on generalization,
shown in Fig. 4 and 5 of the main text, is presented in Tab. 6.
Finally, the results of the models used to examine the reli-
ability of zero-shot uncertainties in downstream tasks, as
shown in Fig. 6, are detailed in Tab. 7.

L. Localized Uncertainty Samples
In Fig. 17 we provide uncertainty samples together with
their localized uncertainty estimates, as extracted from a
ViT-Large pretrained on BigEarthNet.

M. Uncertainty distribution between upstream
and downstream tasks

In Sec. 4.5 of [31] the authors showed that predicted un-
certainties capture aleatoric, and not epistemic uncertainty.
The presence of aleatoric uncertainty is validated in our ex-
periments by Fig. 9, where the noisy subset of BigEarthNet
exhibits higher uncertainty than its noise-free counterpart,
despite coming from the same dataset. To further solid-
ify the lack of epistemic signals, we replicate the analysis
from [31] using ViT-Large pretrained on BigEarthNet and
compare its uncertainty distribution with the ones in down-
stream tasks (Fig. 15). Despite the distribution shift, uncer-
tainties on BigEarthNet span a wide range and are higher
than those on downstream datasets, refuting the assumption
that they reflect epistemic uncertainty. Notably, MARIDA
exhibits the lowest uncertainty while coming from a very
distinct EO domain.



Figure 16. Samples with high/low downstream representation uncertainty across datasets used in this study. The uncertainty estimates
were extracted from a ViT-Large pretrained on Flair.



Figure 17. Example samples along with their zero-shot localized uncertainty estimates, as extracted by a ViT-Large pretrained on BigEarth-
Net.


