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A. Derivations

A.1. Deriving the bounded 2D winding number
The 2D winding number from can be rearranged as
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Considering a⊥i as a line segment on the tangent line at pi and symmetric around pi, this line segment subtends a signed
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A.2. Winding number gradients
G(µ) : R3N → R3N is given by
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which can be rearranged into a Hessian vector product as
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The gradient w.r.t. µi is given by
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A.3. Bounded winding number gradients
First note that
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GB(µ) : R3N → R3N is given by
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which can be rearranged into a Hessian vector product as
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The gradient w.r.t. µi is given by

∇µj
wB(pi; pj , µj) = ∇µj

c (wU (pi, pj , µj))xi (51)

=
1

(1 + |4wU (pi, pj , µj)|)
3
2

∇µj (wU (pi, pj , µj)) (52)

=
1

(1 + |4wU (pi, pj , µj)|)
3
2

∇µj

(
(pj − pi)

Tµj

4π∥pj − pi∥32

)
(53)

=
1

(1 + |4wU (pi, pj , µj)|)
3
2

(pj − pi)

4π∥pj − pi∥32
. (54)



B. Experimental Details

GCNO dataset. Following GCNO [54], we sample 3k points from the shapes in their subset, and report on percentage of
good points (PGP), angle RMSE and chamfer distance. Since we do not have access to their 3k sampling, we run all previous
methods on our sampling using their code, rather than use results reported in GCNO. PGP and angle RSME are metrics on
the estimated normals for each input point: PGP is defined as the percentage of input points whose estimated normal is within
90◦ of the ground truth normal, and angle RMSE is the root mean squared error between the true and estimated normals in
degrees. For chamfer distance, a mesh is created from the estimated normals using SPSR [28], after which both the ground
truth and reconstructed mesh is sampled random with 100k samples each. The chamfer distance is the average of the two
one sided chamfer distances, each computing the average distance to the closest point in the other mesh for all points in the
original mesh.

We compare against four normal estimation methods, iPSR [20], PGR [34], GCNO [54] and WNNC [35]. Note that PGR,
GCNO and WNNC also use winding numbers.

ShapeNet. We use the subset of ShapeNet from Koneputugodage et al. [31], which contains 20 shapes that are determined
to be the most complex to reconstruct from the ShapeNet [12] subset provided by [52]. They determine this using their
SION metric, which determines how different the surface of the shape is from an enclosing sphere in terms of reachability.
The dataset provides 100k uniformly sampled points for each shape as the input for surface reconstruction, normals for each
of these points, and also provides 100k points uniform samples from the domain with ground truth labels for whether each
domain sample is within the shape or not. Usually chamfer distance and interior IoU is reported, however we replace chamfer
distance with angular RSME as it is more discriminative now that the benchmark is saturating. Note that IoU is computed
using the labeled domain samples given in the dataset. We again use SPSR to reconstruct a surface from our estimated
normals.

We compare to previous unoriented surface reconstruction methods on this dataset, SAP [49] and PG-SDF [31], and two
normal estimation methods, iPSR [20] and WNNC [35]. Note that PGR and GCNO are unable to run on input points clouds
of this size, PGR’s linear system does not fit within GPU memory (we used a 24GB RTX3090) and GCNO does not within
within 24hrs (depending on the shape it even gets stuck on building the Voronoi diagram).

C. Further Results

We show results on various splits from the SCUT surface reconstruction benchmark [25], including 20 real scans in Tab. 4,
and 30 synthetic shapes with various artifacts to them in Tabs. 5 to 8. These are no artifacts (perfect), non-uniform sampling,
noise and missing data. For perfect and non-uniform sampling we categorize the 30 shapes by the three levels of shape
complexity that the dataset identifies. For noise and missing data, the dataset gives three levels of the artifact, which is
applied to all 30 shapes. We use their provided metrics: Normal Consistency Score (NCS), Chamfer Distance (CD) and
F-score (Fs).

We compare the original WNNC algorithm, WNNC (Ω), with our bounded formulation of WNNC, WNNC (SD, A, GB ,
Ω). We use the smallest smoothing width schedule, Ω0, and also use Ω1 when the artifacts are more pronounced.

On real scans our bounded formulation is consistently better for both noise levels on all metrics. For perfect data, both
methods achieve the same results with one minor deviation. For non-uniform data, the results are similar except for complex
shapes where our bounded formulation is better. For noisy shapes our bounded formulation is comparative for lower noise
but better for higher amount of noise, especially when using the lower smoothing widths. Finally, for missing data the results
are comparative at all levels and smoothing widths, with no method doing clearly better in some instance.

NCS ↑ CD ↓ Fs ↑
Method Mean Std Mean Std Mean Std

WNNC (Ω0) 0.9275 0.0778 36.4386 31.3410 0.8540 0.1704
WNNC (SD, A, GB , Ω0) 0.9282 0.0771 35.6997 30.6559 0.8554 0.1695
WNNC (Ω1) 0.9425 0.0524 35.2982 30.0446 0.8616 0.1635
WNNC (SD, A, GB , Ω1) 0.9427 0.0520 35.2618 30.0302 0.8620 0.1630

Table 4. Results on real-scanned data (20 shapes) from the SCUT surface reconstruction benchmark [25].



Simple Ordinary Complex

Method NCS CD Fs NCS CD Fs NCS CD Fs

WNNC (Ω0) 0.988 0.239 0.971 0.970 0.145 0.999 0.949 0.177 0.975
WNNC (SD, A, GB , Ω0) 0.988 0.239 0.971 0.970 0.145 0.999 0.949 0.182 0.975

Table 5. Results for perfect data, 10 shapes per complexity, from the SCUT surface reconstruction benchmark [25].

Simple Ordinary Complex

Method NCS CD Fs NCS CD Fs NCS CD Fs

WNNC (Ω0) 0.989 0.279 0.879 0.970 0.170 0.984 0.949 0.190 0.969
WNNC (SD, A, GB , Ω0) 0.989 0.279 0.879 0.970 0.171 0.984 0.952 0.164 0.979

Table 6. Results for non-uniform data, 10 shapes per complexity, from the SCUT surface reconstruction benchmark [25].

Low Medium High

Method NCS CD Fs NCS CD Fs NCS CD Fs

WNNC (Ω0) 0.694 0.423 0.722 0.835 0.708 0.887 0.756 0.820 0.812
WNNC (SD, A, GB , Ω0) 0.712 0.443 0.716 0.862 0.293 0.925 0.780 0.580 0.814
WNNC (Ω1) 0.804 0.476 0.650 0.934 0.343 0.931 0.912 0.345 0.835
WNNC (SD, A, GB , Ω1) 0.808 0.495 0.645 0.935 0.355 0.929 0.918 0.334 0.836

Table 7. Results under three noise levels (30 shapes at each level) from the SCUT surface reconstruction benchmark [25].

Low Medium High

Method NCS CD Fs NCS CD Fs NCS CD Fs

WNNC (Ω0) 0.931 1.737 0.834 0.924 1.895 0.803 0.905 2.252 0.717
WNNC (SD, A, GB , Ω0) 0.931 1.735 0.834 0.924 1.898 0.802 0.905 2.267 0.716
WNNC (Ω1) 0.929 2.162 0.815 0.923 2.499 0.780 0.902 2.687 0.698
WNNC (SD, A, GB , Ω1) 0.929 2.168 0.815 0.923 2.488 0.780 0.902 2.680 0.698

Table 8. Results under three levels of missing data (30 shapes at each level) from the SCUT surface reconstruction benchmark [25].



D. Further Visualizations

Ground Truth WNNC-B sGCNO WNNC GCNO PGR iPSR
Figure 7. Comparison of normal estimation methods on GCNO’s dataset. WNNC-B denotes our bounded formulation of WNNC (LM,
AB , GB , Ω1); sGCNO denotes our stochastic bounded formulation of GCNO; and WNNC denotes WNNC (Ω1).



Ground Truth WNNC-B sGCNO WNNC GCNO PGR iPSR
Figure 8. Comparison of normal estimation methods on GCNO’s dataset. WNNC-B denotes our bounded formulation of WNNC (LM,
AB , GB , Ω1); sGCNO denotes our stochastic bounded formulation of GCNO; and WNNC denotes WNNC (Ω1).



E. Further Details on GCNO
Xu et al. [54] propose an algorithm for normal estimation, called globally consistent normal orientation (GCNO), that reg-
ularizes the winding number field. Given an input point cloud P = {pi}Ni=1, the algorithm first computes the 3D Voronoi
diagram of P . It then estimate areas for each point by the cross section of that point’s Voronoi cell in the plane orthogonal
to direction that the cell is longest. Normals are parameterized using spherical coordinates and are initialized randomly. The
algorithm then optimizes these normals using L-BFGS with respect to a loss function that involves computing the winding
number at each vertex of the Voronoi diagram.

Given the input point cloud P = {pi}Ni=1 with current normal estimates ni and fixed area estimates ai, domain queries
(all Voronoi vertices) Q = {qj}Mj=1 and per-point queries (chosen as the Voronoi vertices defining the cell about each input
point) Qi = {qik}

Mi

k=1 i = 1, .., N , the loss function is formulated as the sum of three components,
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This optimizes the normals ni for three criteria on the winding number field. Component L01 optimizes for the winding
number to be either zero or one at all domain queries qj , as the ground truth winding number field for the surface should be
zeor outside and one inside. The double well function fDW(x) and its sheared version fSDW(x) are shown in Fig. 9, the latter
is used to encourage the value one more as they note that random normals makes the winding number usually around zero.
Loss component LB optimizes for the winding number at queries qik around each input point pi to be balanced with roughly
equal number of zeros and ones, as pi should be on a surface that separates inside from outside. In particular they maximize
the variance of w(qik), as this tends to balanced winding numbers whose values are restricted to zero and one. Finally, LA(n)
optimizes for the normal at each point to align with the Voronoi vertices with the lowest winding number.

F. Further Details on Our sGCNO
F.1. Overview
Set up and area estimation The input point cloud is first translated and scaled to fit within [−1, 1]3. Normals are param-
eterized using spherical coordinates and initialized randomly. We take an efficient and effective approach to estimate point
areas, the area for each point is the area of a circle with radius given by the distance to its nearest neighbor. We hypothesize
that this should be sufficient in most cases as the winding number field gracefully degrades with holes [26]. We find that
these estimates are good on average, so the total point cloud area is reasonable though individual areas may deviate from the
true area depending on the sampling. As a result, point areas are allowed to be optimized within some trust interval of the
estimate (see Appendix F.2).

Sampling. At each iteration, samples are generated with respect to a subset of the input points {pi}i∈S where S ⊂
{1, ..., N}. Around each point Gaussian noise is sampled with two different standard deviations, Mc coarse samples and Mf

fine samples with variance σc and σfi , respectively. We set σc to 0.3 and σfi to the average distance from pi to its four nearest



neighbors. For the term L01 we use both the coarse samples Qc,i = {q(c,i)k }Mc

k=1 and the fine samples Qf,i = {q(f,i)k }Mf

k=1 for
all i ∈ S. However, we only use the fine samples for the balance term LB . This set up is quite flexible—if the input point
cloud is quite dense then a small subset S can be used effectively, and the accuracy of LB can be adjusted by varying Mf .

Loss functions. Our loss is comprised of two terms from Xu et al. [54], L01 and LB . We omit the third term, LA as we do
not compute a Voronoi diagram. While being a good heuristic it does not allow for accurate normals. We further improve on
losses L01 and LB in Appendix F.3.

As noted in GCNO, L01 and LB are good at orienting normals in the right direction (i.e., facing outward), but do not give
good angular estimates. As such, we propose two additional losses, an alignment loss to make the normals consistent with its
surrounding winding number field (essentially smoothing it) and a surface loss to ensure that the input points lie on the 0.5
level set. See in Appendix F.3.

Scaling for large point clouds. Due to our sampling, in each batch we need to compute the winding number for (Mc +
Mf )|S| query points. Since each winding number requires a term from each input point, this means forming a matrix of
size (Mc +Mf )|S| × N . For large N , this may not fit within GPU memory. Note however that we are just summing over
these matrices, not solving a matrix equation. Thus, we use the KeOps library [13, 14] which allows computing reductions
of large arrays on the GPU without memory overflow. To do this, they do not actually form the array and instead have the
user specify the large array and its reduction symbolically, which KeOPS then parallelizes on the GPU efficiently with linear
(not quadratic) memory.

F.2. Optimizing point areas
We consider the point areas ai as parameters of the optimization (alongside the normals). However, to avoid straying too far
from our initially estimated areas aest

i , we employ two mechanisms:: First, we specify boundary constraints such that ai ∈
(aest

i /4, 1000aest
i ), and, second, we add a loss that encourages the total area to remain close to the total area at initialization,
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We find the latter to be quite important so that the areas do not change too rapidly at the start of optimization.

F.3. Loss functions
01 loss. An issue with GCNO’s sheared double well, Eq. (59), is that its minima are not actually at zero and one (see Fig. 9).
We formulate the functions that have this property by integrating the required derivative, which gives
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2
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When a = 16 and c = 0.5 we get back the symmetric double well Eq. (60) with some vertical translation. To shear, we can
change c to be closer to zero. In particular, we find that c = 0.41 resembles Eq. (56) quite well. On the other hand, we can
change how much the loss penalizes by changing a, and we find that using a = 8 works better.

We use the sheared version of Eq. (63) for coarse samples, also observing GCNO’s findings that the distribution of the
ground truth w(q) for coarse samples is highly skewed towards one. However we note that fine samples the distribution is
balanced, so for those samples we use our symmetric loss. Thus our loss is
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Balance loss. The aim of the balance loss is to enforce that w(q) = 0 and w(q) = 1 is evenly distributed around each
input point. We find that with our sampling, purely maximizing variance (as per Eq. (57)) leads to increasing the number of
winding numbers that are outside of [0, 1]. Thus we instead note what the variance should be for an equal number of zeros
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Figure 9. GCNO’s double well functions fDW(x) (top left), fSDW(x) (top right) and our double well functions fDW(x; 8, 0.5) (bottom
left), fDW(x; 8, 0.41) (bottom right). Note that fSDW(x) minima are not exactly at zero and one, and our functions penalize less.

and ones and constrain the variance to reach that
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where w̄f,i is the mean winding number and the target variance is calculated as σ2
opt =
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SDF literature it is common to do this kind of balance loss by constraining the mean of the samples rather than the variance
[37]. We find that this helps initial optimization more than the variance loss. Thus the mean loss is
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and our balance loss is

LB = Lmean + Lvar. (67)

Alignment loss. Successfully optimizing the winding number ensures that the normals are oriented to be consistent with the
input points bounding an interior region (in the sense that they point in the same direction), however there is no guarantee
that the normals actually align well with the normals of that interior region. However, if the normals are consistent then the
average winding number field around each point should align with the ground truth normals. Thus using our fine samples
we compute the gradient of the winding number field (analytically) around each point and average it to get a rough inward



normal direction, and constrain our normals to align with that
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Surface loss. Ideally the surface of the shape should be on the 0.5 level set of the winding number. We add a loss to enforce
that the input points lie on this level set:
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2
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We appropriately add small values to any denominator of the form ∥pi − q∥2 in Eq. (12) so that computing w(q) at input
points is well defined.


