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9. Implementation details
9.1. Reproducibility
All pre-training experiments employed three
NVIDIA A100 80 GB GPUs and took approxi-
mately 24 hours. The code, weights, dataset, and
dataset generation scripts are publicly released at
http://github.com/AberdeenML/EquiCaps.

9.2. Pre-training
We adopt the experimental setup from [24]. All meth-
ods use ResNet-18 [30] as the base encoder network. For
the compared methods except CapsIE, the projector is a
three-layer MLP. For capsule-based methods, the projector
consists of 32 capsules. Training lasts 2000 epochs with
a batch size of 1024 to ensure convergence. The Adam
optimiser [37] is employed with a learning rate of 10−3,
β1 = 0.9, β2 = 0.999, and a weight decay of 10−6. We
mention the hyperparameters of each method below.

Supervised ResNet-18 The training and evaluation pro-
tocols are identical to those of the self-supervised setups.

VICReg The projector is configured with intermediate
dimensions of 2048-2048-2048, with loss weights λinv =
λV = 10, and λC = 1.

SimCLR, SEN The projector is configured with inter-
mediate dimensions of 2048-2048-2048, and the tempera-
ture parameter of the loss is set to 1.

SimCLR + AugSelf The projector is configured with
intermediate dimensions of 2048-2048-2048, and the tem-
perature parameter of the loss is set to 1. The parameter
prediction head is configured with a MLP with intermedi-
ate dimensions 1024-1024-4. The two losses, SimCLR and
parameter prediction, are assigned equal weight.

EquiMod In alignment with the original protocol, the
projector is configured with intermediate dimensions of
1024-1024-128. The temperature parameter of the loss is
set to 0.1. The two losses, invariance and equivariance, are
assigned equal weight.

SIE Aligning with the original protocol, both the invari-
ant and equivariant projectors are configured with interme-
diate dimensions 1024-1024-1024. The loss weights are
λinv = λV = 10, λequi = 4.5, and λC = 1.

CapsIE, EquiCaps The projector is configured with 32
capsules. The loss weights are λinv = 0.1, λequi = 5, λV =
10, and λC = 1.

9.3. Evaluation
Semantic classification A linear classification layer is
trained on the frozen representations. The Adam optimiser
is used with a learning rate of 10−3, β1 = 0.9, β2 = 0.999,
and no weight decay. Training is carried out for 300 epochs
with a batch size of 256, using the cross-entropy loss func-
tion. Performance is evaluated on the validation set com-
prising objects excluded from the training set.

Rotation prediction A three-layer MLP with interme-
diate dimensions 1024-1024-4 and intermediate ReLU acti-
vations is trained on the frozen representations. The inputs
are concatenated pairs of representations from two distinct
views of an object. The MLP is trained to regress the ro-
tation between these views. The Adam optimiser is used
with a learning rate of 10−3, β1 = 0.9, β2 = 0.999, and no
weight decay. Training is conducted for 300 epochs with a
batch size of 256, using the mean-squared error loss func-
tion. Performance is evaluated on the validation set using
R2, which contains objects excluded from the training set,
with the object rotation range the same across both sets.

Translation prediction The same methodology as for
rotation prediction is followed. The only modification is
that the output dimension of the MLP is three, correspond-
ing to the elements of the translation vector, since is trained
to regress the translation between the selected views.

Colour prediction A linear layer is trained on top of
frozen representations to regress the floor and spot hue. The
inputs are concatenated pairs of representations from two
distinct views of an object. The Adam optimiser is used
with a learning rate of 10−3, β1 = 0.9, β2 = 0.999, and no
weight decay. Training is conducted for 50 epochs with a
batch size of 256, using the mean-squared error loss func-
tion. Performance is evaluated on the validation set using
R2.



10. Sensitivity analysis & ablation studies
10.1. Convergence speed
We examine convergence speed on 3DIEBench and
3DIEBench-T. As shown in Tab. A.5 for rotation predic-
tion on 3DIEBench, our method converges fastest, reach-
ing an R2 of 0.75 by 100 epochs and stabilising at 0.78 by
500 epochs, significantly ahead of the other methods and
more than double the early-stage performance of SIE and
CapsIE. As shown in Tab. A.6, a similar trend emerges in
classification, where our method achieves the highest accu-
racy at 100 epochs—surpassing even the purely invariant
methods. While longer training further improves our clas-
sification performance, our approach gains less from 500 to
2000 epochs compared to the rest methods.

Convergence-speed results on 3DIEBench-T for ro-
tation prediction and classification appear in Tab. A.7
and Tab. A.8, respectively. As with the rotation prediction
task on 3DIEBench, our method still converges the fastest,
though its relative convergence speed between 100 and 500
epochs is slower. In classification, other methods exhibit
comparable performance. We attribute this to the added
complexity of 3DIEBench-T as learning more complex geo-
metric transformations demands more epochs for EquiCaps
to encode all transformations.

Table A.5. Impact of training duration on 3DIEBench rotation
prediction performance on learned representations.

Rotation (R2)

Method 100 ep. 500 ep. 1000 ep. 1500 ep. 2000 ep.

VICReg 0.28 0.46 0.46 0.46 0.45
SimCLR 0.42 0.48 0.49 0.51 0.52
SimCLR + AugSelf 0.50 0.71 0.74 0.75 0.75
SEN 0.39 0.48 0.49 0.50 0.51
EquiMod 0.40 0.48 0.49 0.49 0.50
SIE 0.29 0.68 0.72 0.73 0.73
CapsIE 0.31 0.68 0.75 0.75 0.74
EquiCaps 0.75 0.78 0.78 0.78 0.78

Table A.6. Impact of training duration on 3DIEBench classifica-
tion performance on learned representations.

Classification (Top-1)

Method 100 ep. 500 ep. 1000 ep. 1500 ep. 2000 ep.

VICReg 49.12 79.40 83.12 84.43 84.28
SimCLR 72.58 84.00 85.87 86.61 86.73
SimCLR + AugSelf 73.50 84.57 86.51 87.08 87.44
SEN 67.24 82.36 85.29 86.45 86.99
EquiMod 73.19 84.89 86.36 87.00 87.39
SIE 51.49 77.59 81.05 82.12 82.94
CapsIE 46.12 72.60 78.68 79.54 79.35
EquiCaps 75.44 81.10 82.36 82.82 83.24

Table A.7. Impact of training duration on 3DIEBench-T rotation
performance on learned representations. Equivariant methods are
pre-trained for both rotation and translation.

Rotation (R2)

Method 100 ep. 500 ep. 1000 ep. 1500 ep. 2000 ep.

VICReg 0.25 0.24 0.25 0.36 0.39
SimCLR 0.37 0.44 0.44 0.45 0.44
SimCLR + AugSelf 0.41 0.63 0.67 0.68 0.69
SEN 0.34 0.46 0.46 0.46 0.46
EquiMod 0.38 0.46 0.46 0.45 0.46
SIE 0.26 0.44 0.47 0.48 0.48
CapsIE 0.25 0.49 0.62 0.62 0.62
EquiCaps 0.54 0.70 0.71 0.70 0.71

Table A.8. Impact of training duration on 3DIEBench-T classifica-
tion performance on learned representations. Equivariant methods
are pre-trained for both rotation and translation.

Classification (Top-1)

Method 100 ep. 500 ep. 1000 ep. 1500 ep. 2000 ep.

VICReg 31.50 19.46 31.80 66.60 74.71
SimCLR 67.56 78.32 79.52 79.87 80.08
SimCLR + AugSelf 66.02 78.80 80.04 80.77 81.04
SEN 59.64 77.11 79.17 79.66 80.23
EquiMod 69.02 79.31 80.38 80.85 80.89
SIE 44.97 67.72 73.92 75.58 75.91
CapsIE 37.22 65.14 74.13 75.63 76.31
EquiCaps 62.00 75.87 77.31 77.45 77.88

10.2. Number of capsules
We report in Tab. A.9 that increasing the number of cap-
sules improves classification and rotation prediction on
3DIEBench. A similar trend appears for 3DIEBench-T,
though geometric tasks depend on explicit optimisation.
Specifically, from 32 to 64 capsules yields a slight decrease
in translation when optimising only for rotation, suggesting
that the additional capacity is primarily dedicated to the ex-
plicit rotation objective. Nonetheless, when we optimise for
both objectives, translation performance increases substan-
tially, confirming the effectiveness of the 4×4 capsule pose
structure and our proposed matrix manipulation while clas-
sification, rotation and translation performance remain near
supervised level. We also observe that as the number of cap-
sules grows, the network tends to focus more on geometric
tasks relative to colour prediction.



Table A.9. Impact of the number of capsules in the EquiCaps projector on 3DIEBench and 3DIEBench-T. †Denotes pre-trained for both
rotation and translation. We evaluate invariance via classification and equivariance via rotation, translation, and colour prediction tasks.

Classification (Top-1) Rotation (R2) Translation (R2) Colour (R2)

No. of Capsules 3DIEBench 3DIEBench-T 3DIEBench 3DIEBench-T 3DIEBench-T 3DIEBench 3DIEBench-T

16 81.89 73.86 74.13† 0.77 0.71 0.67† 0.57 0.56† 0.13 0.04 0.04†

32 83.24 76.91 77.88† 0.78 0.73 0.71† 0.60 0.61† 0.09 0.05 0.02†

64 83.66 77.96 78.80† 0.79 0.74 0.71† 0.53 0.64† 0.05 0.01 0.01†

Table A.10. Ablation study of different loss function components contributing to invariance in EquiCaps, evaluated on 3DIEBench
downstream tasks. We evaluate learned representations on invariance (classification) and equivariance (rotation and colour prediction
via R2). The losses considered are Linv (invariance), LME-MAX (mean entropy maximisation regularisation), Lequi (equivariance), and
Lreg (variance-covariance regularisation). Lreg can be applied either to Zcat, concatenating both activation and pose matrices, or to Zpose,
which is applied only to the pose matrices.

Loss Functions Classification (Top-1) Rotation (R2) Colour (R2)

Method Linv LME−MAX Lequi Lreg

EquiCaps OnlyEqui - - ✓ Zpose 81.68 0.78 0.01
EquiCaps w/o LME−MAX & Linv - - ✓ Zcat 82.40 0.78 0.04
EquiCaps OnlyEqui w/ LME−MAX - ✓ ✓ Zpose 81.61 0.78 0.06
EquiCaps w/o Linv - ✓ ✓ Zcat 81.43 0.78 0.06

EquiCaps ✓ ✓ ✓ Zcat 83.24 0.78 0.09

10.3. Invariance loss function: components
We examine how different invariance-related loss func-
tion components influence the performance of EquiCaps on
downstream tasks using the 3DIEBench. Specifically, we
evaluate the impact on classification (invariance), rotation
and colour prediction (equivariance), on learned represen-
tations. We investigate the following configurations:
(a) Lequi + Lreg

(
Zpose

)
: Equivariance combined with

variance-covariance regularisation applied only to the
pose matrices.

(b) Lequi + Lreg

(
Zcat

)
: Equivariance combined with

variance-covariance regularisation applied on the con-
catenated activation vectors and pose matrices.

(c) Lequi +Lreg

(
Zpose

)
+LME-MAX: As in (a), but com-

bined with mean-entropy maximisation regularisation
(LME-MAX).

(d) Lequi + Lreg

(
Zcat

)
+ LME-MAX: As in (b), but com-

bined with LME-MAX.
(e) Our EquiCaps method as defined in Eq. (8) that com-

bines invariance, equivariance, variance-covariance
regularisation applied on the concatenated activation
vectors and pose matrices, and mean-entropy maximi-
sation regularisation.

We observe in Tab. A.10 that including all of our
invariance-related losses Linv, LME-MAX, Lreg

(
Zcat

)
,

combined with Lequi improve classification without com-
promising rotation performance, and we maintain almost
perfect invariance to colour hue transformations. As ex-

pected, the mean-entropy maximisation LME-MAX alone
does not suffice to boost classification in the absence of
our invariance loss, regardless of whether the variance-
covariance regularisation is applied to the pose matrices
or to the concatenated embeddings. This finding suggests
that LME-MAX most effectively distributes activations when
combined with the invariance loss. Similarly, whether we
apply the variance-covariance regularisation solely to the
pose matrices or to the concatenated embeddings, including
the invariance loss and LME-MAX still yields further gains
in classification. We also find that in every ablation set-
ting, rotation performance remains stable and on par with
the supervised baseline. Nonetheless, our proposed method
further enhances semantic representation while retaining al-
most perfect invariance to colour.



Table A.11. Evaluation on a subset of Objaverse-LVIS using a
ResNet-18 backbone. Representations are evaluated on an invari-
ant task (classification) and an equivariant task (rotation predic-
tion). Each model is evaluated five times with different random
seeds. We report in bold the best performance across all methods.

Pre-training (Frozen Backbone) Transfer Learning (Fine-tuning)

Method Classification (Top-1) Rotation (R2) Classification (Top-1) Rotation (R2)

VICReg 80.43±1.11 29.06±0.79 90.22±0.70 62.06±1.17
SimCLR 83.44±0.88 28.80±0.34 91.08±0.72 63.36±1.10
AugSelf 83.87±0.38 29.80±1.49 90.75±0.70 63.69±0.88

SEN 82.90±1.17 29.51±1.14 90.86±0.38 63.61±1.52
EquiMod 83.76±0.45 29.58±1.25 89.89±0.24 62.84±1.09
SIE 75.27±1.26 28.96±0.49 89.78±0.66 61.85±0.70
CapsIE 72.58±0.85 43.32±1.39 90.75±0.45 63.60±0.95
EquiCaps 78.82±0.61 49.46±0.91 92.80±0.61 65.14±1.12

Table A.12. Transfer learning via DETR fine-tuning on MOVi-E.
We report in bold the best performance.

Method Classification (Top-1) Rotation (R2) mAP mAP50 mAP75

SIE 73.7 0.20 26.47 41.83 28.26
CapsIE 73.3 0.21 27.03 41.97 29.84
EquiCaps 75.2 0.24 30.91 48.74 33.58

11. Additional quantitative results
11.1. Objaverse results
Unlike ShapeNet-derived datasets [9] such as
3DIEBench [24] and our 3DIEBench-T, Objaverse [16]
contains a considerably wider variety of objects, many of
which are real-world scans. To further validate EquiCaps
on a different randomly rotated multi-view dataset, we
use a subset of Objaverse-LVIS [16] with six classes
(airplane, bench, car automobile, chair, coffee table, and
gun), following the class selection of [54]. We evaluate
classification and rotation prediction using two approaches.
First, we perform transfer learning by fine-tuning the whole
network pre-trained on 3DIEBench. Second, we pre-train
each model from scratch, and we train only the task-specific
heads. All remaining experimental settings are identical to
those described in supplementary Sec. 9.

As the fine-tuning results in Tab. A.11 show, EquiCaps
generalises best on both tasks, outperforming even the in-
variant methods. With the encoder frozen, the classification
results for all methods are similar to their 3DIEBench re-
sults. For rotation prediction, EquiCaps maintains the best
performance, while all methods except the capsule-based
CapsIE show a similar drop in performance. We attribute
this decline to the lack of an explicit pose mechanism in
non-capsule architectures, which makes pose learning more
difficult on small datasets, whereas CapsNets have shown
improved performance on small datasets [15].

11.2. MOVi-E results
To further evaluate the performance in more realistic and
challenging setting we explore the Multi-Object Video
(MOVi-E) dataset [26], which includes synthetic generation
of multiple objects, including occlusions, and realistic back-
grounds. The dataset consists of random scenes with up
to 17 distinct objects placed in realistic rendered environ-
ments. Each scene is rendered with a 2 second rigid body
simulation with multiple objects falling. MOVi-E uses a lin-
ear camera movement, but in our setting we do not process
the video sequence, but instead sample frames and process
each independently. For full details on the dataset, we refer
the reader to the original work [26] and the dataset reposi-
tory1.

For this alternative dataset, our task is to both detect each
of the objects via a bounding box, and subsequently deter-
mine the object type (classification) and its pose in relation
to the frame of the camera. To accommodate object detec-
tion, we employ the DETR [5] architecture. The ResNet-50
backbone is directly taken from pre-training on 3DIEBench
and weights transferred to the backbone of the DETR ar-
chitecture. We then freeze the backbone, and fine-tune the
transformer encoder, decoder, and prediction heads via the
MOVi-E dataset. We modify DETR by adding a MLP pre-
dictor to regress the rotation quaternions for each object.
This quaternion predictor takes the same form as the bound-
ing box predictor, with a three-layer MLP with 256 hid-
den dimensions. The quaternion regression is optimised via
minimising the mean-squared error and this term is simply
added to the overall objective, which is a weighted sum of
individual losses, details of which are presented in [5].

We train the transformer encoder, decoder, and predic-
tion heads for 200 epochs, with a batch size of 64, and using
a learning rate of 0.0001 reduced by a factor of 10 at epoch
100. We set the weighting of the quaternion loss to 2 and
Generalized Intersection over Union to 3, leaving all other
settings to default as defined in the original work.

The results of the classification, object detection, and ro-
tation regression are given in Tab. A.12. We observe that our
approach achieves improved performance across all evalu-
ation metrics compared to SIE and CapSIE, which are the
next best equivariant methods. This demonstrates improved
generalisation and robustness of the learned representations
to operate in more complex settings. Although EquiCaps’s
performance is superior in our experiments, the overall per-
formance is still limited given the inherent complexity of the
dataset and that the ResNet-50 backbone has been trained
on the single-object setting. Future work will explore this
setting in more detail and introduce adaptations to process
video sequences.

1https://github.com/google-research/kubric/blob/main/challenges/movi.



Figure A.6. Nearest-neighbour representation retrieval on 3DIEBench validation set directly after pre-training. The query image (left) is
compared against each method’s learned representations to find its top three nearest neighbours (in rows: 1-NN, 2-NN, 3-NN).

12. Additional qualitative results
12.1. Nearest-neighbour representations on

3DIEBench
We replicate the retrieval of nearest representations from
Fig. 4 performed on the 3DIEBench-T dataset, on
3DIEBench and show the results in Fig. A.6. We ob-
serve that our method, CapsIE, and SIE consistently re-
trieve nearest neighbours in similar poses as with the query,
consistent with their high quantitative rotation prediction
results. For the remaining methods, we observe that the
learned invariance dominates, yielding mostly a range of
object poses among the retrieved samples. However, aside
from VICReg which showed the highest level of invari-
ance in the quantitative results, these methods also retrieve
some nearest neighbours in similar poses—albeit less ac-
curately—demonstrating that partial rotation-related infor-
mation remains at the representation stage. Overall, these
findings are consistent with our quantitative results.

12.2. Equivariance via pose manipulation
In addition to the qualitative results shown in Fig. 5, we fur-
ther illustrate our method’s equivariant properties by per-
forming the inverse of the previous experiment. Specifi-
cally, we rotate an object around the z-axis within the range
[0, π

2 ] in 5◦ increments, and feed each of these generated
and original (source) pose into our projector to obtain its
pose embeddings. Next, instead of transforming each em-
bedding by the inverse rotation, we multiply the source pose
embedding by the corresponding transformation matrix as
shown in Fig. A.7. For each transformed embedding we
retrieve the nearest neighbour among all embeddings. Ob-
serving how each nearest neighbour closely changes ac-
cording to the applied latent transformation further high-

Figure A.7. Illustration of equivariant capsule-based pose manip-
ulation. We observe that our pose embeddings change predictably
based on the applied transformation.

lights our methods’ equivariant properties and its capability
to preserve and manipulate pose information directly in the
latent space.



Table A.13. Computational cost during pre-training on
3DIEBench using three NVIDIA A100 80GB GPUs with a
ResNet-18 backbone and batch size 1024. Equivariant methods
are trained to be solely rotation-equivariant.

Method No. of Parameters (M) Iteration Time (s) GFLOPs

VICReg 20.6 0.64 12.3
SimCLR 20.6 0.65 12.3
SimCLR + AugSelf 22.7 0.74 12.3

SEN 24.8 0.65 12.3
EquiMod 14.6 0.65 12.3
SIE 20.1 0.65 12.3
CapsIE 32.6 1.16 12.9
EquiCaps 18.6 0.90 12.7

13. Computational cost
In Tab. A.13 we compare, for each method, the number of
parameters, iteration time, and GFLOPs during pre-training
on the 3DIEBench dataset. The iteration time is computed
over 1000 iterations after 1000 warmup iterations. The rest
of the settings are identical to those described in Sec. 9.2.

We observe that adding the CapsNet head in EquiCaps
increases computation moderately compared to the non-
capsule-based approaches, due to use of the non-iterative
self-routing algorithm [29]. This is a reasonable trade-
off, as EquiCaps achieves state-of-the-art SO(3) and SE(3)
equivariance. Notably, EquiCaps is more computationally
efficient than previous capsule-based approaches because it
enforces equivariance directly in the pose matrices, omit-
ting the need for the intermediate predictions required by
the separate predictor module.

14. 3DIEBench-T dataset generation
14.1. Generation protocol
3DIEBench-T extends the original settings of the
3DIEBench dataset by incorporating object translations.
The dataset consists of 52,472 object instances across
55 classes from ShapeNetCoreV2 which are originally
sourced from 3D Warehouse.

For each instance, 50 random views are drawn from
a uniform distribution over the parameter ranges listed
in Tab. A.14, producing images at a resolution of 256×256
pixels. For each view, the object is first translated by t and
then rotated by R, thus, the object’s final base translation is
Rt. We also store the transformation parameters as latent
information alongside each image, facilitating equivariant
tasks. We are following the original settings of 3DIEBench
in which the rotation ranges are constrained to make the
task more controllable and the lighting angle is adjusted to
ensure that shadows do not provide a trivial shortcut for
the model. Translation ranges are restricted so that ob-
jects do not move outside the camera’s view. Following
the 3DIEBench split protocol, 80% of the objects are used

for training, while the remaining 20%, unseen during train-
ing but sampled from the same transformation distribution,
form the validation set. Generating the entire dataset re-
quires approximately 44 hours on 12 NVIDIA A100 80GB
GPUs, though the process can run in a single script.

Table A.14. Parameter ranges for uniformly random object rota-
tion, translation, and lighting in 3DIEBench-T. Tait–Bryan angles
are used to define extrinsic object rotations, and the light’s position
is specified using spherical coordinates.

Parameter Min. Value Max. Value
Object rotation X −π/2 π/2
Object rotation Y −π/2 π/2
Object rotation Z −π/2 π/2
Object translation X −0.5 0.5
Object translation Y −0.5 0.5
Object translation Z −0.5 0.5
Floor hue 0 1
Light hue 0 1
Light θ 0 π/4
Light ϕ 0 2π



14.2. Supplementary image samples

Figure A.8. Samples of an object instance from the 3DIEBench-T dataset.



Figure A.9. Samples of an object instance from the 3DIEBench-T dataset.



Figure A.10. Samples of object instances from the 3DIEBench-T dataset.


