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Abstract

This document supplements our submission titled CuMPer-
Lay: Learning Cubical Multiparameter Persistence Vector-
izations. We present proofs on the stability of our novel vec-
torization, provide additional background on multiparameter
persistence theory, explain common multifiltrations for im-
ages, and extend the limited data results we have shared.
In addition, we share example images from the datasets we
have used and additional learned multiparameter persis-
tence filtration examples on each dataset. We also share
pseudocode and implementation details for our CUDA GPU
implementation of Cubical Multiparameter Persistence.

A. Stability Results

A.1. Stability of Single Persistence Vectorizations

In machine learning, ensuring the stability of a particular
persistence diagram (PD) vectorization is very crucial, as
stability examines whether small changes in the PD result
in significant alterations in the vectorization. To address
this question, we need clear definitions of what constitutes
”small” and “large” changes, which in turn requires a way to
measure distance within the space of persistence diagrams.
The most widely used metric for this purpose is the Wasser-
stein distance, also known as the matching distance.
Consider two images, X and X', with their associ-
ated persistence diagrams PD(X'T) and PD(X ™), respec-
tively (omitting dimension labels). Each diagram contains
points {qj‘} UA* and {g; } UA~, where A represents
the diagonal (which stands for trivial cycles) with infi-
nite multiplicity. Here, ¢; = (b} ,d;) in PD(X™) de-
notes the birth and death times of a feature o; in X*. Let
¢ : PD(XT) — PD(X ™) be abijection, allowing mappings
even when the cardinalities \{q;“}| and |{g, }| differ. The
p-th Wasserstein distance, denoted WV, is formally defined
as follows:
W,(PD(E ), PP ) = ming (£, o]~ o(aI%) s pe .
ey
Next, a vectorization, denoted as ¢(PD(X')), is called to
be stable if the distance between its outputs for two images,
satisfies the inequality
d(@(PD(X)), p(PD(X7))) < C- Wp(PD(X™), PD(X7))
where d(. , .) represents a suitable metric on the space of
vectorizations. The constant C' > 0 is independent of the
images X'*. This stability inequality interprets that changes

in vectorizations are bounded by changes in persistence dia-
grams. Essentially, two nearby persistence diagrams corre-
spond to nearby vectorizations. If a particular vectorization
o satisfy such a stability condition, we call them stable
vectorization [3]. Notable examples of stable vectorizations
include Persistence Landscapes [6], Silhouettes [1 1], Persis-
tence Images [1], Stabilized Betti Curves [18], and various
Persistence curves [12].

A.2. Stability of MultiPersistence Vectorizations

In this paper, because of technical problems in defining a
multipersistence output like persistence diagrams (Suppl. B),
we directly moved the vectorization of the multifiltrations by
a well-known method called slicing. In particular, assuming
we have 2-parameter filtration {X; ; }, in the multipersistence
grid G of size m x n, for each fixed ig, we get single filtra-
tion X;,, Xj,1 C X2 C -+ C Xjyn = &, which can be
considered as horizontal slicing of the multipersistence grid.
Then, applying vectorizations above to the single filtrations
{ X}, we get m separate vectors @; = p(PD(&;)). Then,
collecting these vectors into a 2-tensor as rows, we obtain a
2-tensor M., which we call the induced MP vectorization
of ¢. For example, when ¢ is Betti vectorization, M, is
simply correspond to multigraded Betti numbers [26], which
are simply m x n matrices for each Betti dimension. We
now show that when the source single parameter (SP) vec-
torization ¢ is stable, then so is its induced MP vectorization
M.
Let XY and X'~ be two images of size r x s. With the
notation in Suppl. A.1, let ¢ be a stable SP vectorization
with the stability equation

d(p(X7F), (X)) < Cp - Wy, (PD(XF), PD(X7))  (2)

for some 1 < p, < 0o. Note that for many common stable
vectorization ¢, d(-, -) is taken as [P» metric [30]. However,
to keep the generality, we are not specifying it here.

Now, we consider the define these multiple single per-
sistence diagrams {PD(XF)} as output for the multipersis-
tence grid, and define a natural matching distance between
as the sum of the corresponding distances for each row.

D,({PD(X,)}, {PD(X,)}) = 1, W,(PD(X),PD(X)).  (3)

Now, we define the distance between induced MP vector-
izations as

m

DM (XT), M (X)) = D A1), (X)) )

i=1

where p > 1.



Theorem 1. Let ¢ be a stable SP vectorization. Then, the
induced MP Vectorization M, is also stable, i.e., with the
notation above, there exists @ > 0 such that for any pair of
images X and X, we have the following inequality.

D(My(XH), My(X7)) < Cp - D, ({PD(XH)}, {PD(X7)})

Proof. As ¢ is a stable SP vectorization, for any
1 < i < m, we have d(p(X;"),p(X)) < C, -
W, (PD(X;"),PD(X;")) for some C, > 0 by Eq (2),
where W, is Wasserstein-p distance. Notice that the con-
stant C, > 0 is independent of ¢. Hence,

DM(XF), My (X)) = 3, d(p(X;7), (7))

S Cp - W, (PD(X), PD(X]))
= Cpo X W, (PD(X"),PD(X;))

= C, D, ({PD(X;)},{PD(X,)})

IN

where the first and last equalities are due to Eq (3) and Eq (4),
while the inequality follows from Eq (2) which is true for
any ¢. This concludes the proof of the theorem. O

Corollary 1 (CumPerLay is stable). Let Wyp represent
CumPerLay vectorization as defined in Section 4.1. Let K
be a cubical complex and let I, G : K — R? be bifiltration
functions. Let K, K¢ be the induced bipersistence modules.
Then, we have

D(Urip (Kr), Unp(Ka)) < Cogr||F — Glloo

Proof. The proof follows from the stability of Perslay Vec-
torizations [9], and the previous stability theorem. In par-
ticular, while the authors proved their stability theorem
for clique complexes in [9], their proofs as single persis-
tence vectorization extends to cubical complexes as all the
relevant results extends to this context [30]. By [8, The-
orem A.2], as single persistence module, fgr each row
1 < myg < M of tIE: bipersistence module /C, we obtain
dp(PD(K%°),PD(K%°) < ||F — G| Where K™ repre-
sents m&" row in bipersistence module K. As Perslay vector-
izations are stable, we obtain

AW (Kr), W3ip (Kr) < Conpdp(PD(K"), PD(K")
where U11%, represents restriction of Uyp to m§ row. After
obtaining similar inequality for each row, the proof follows
by following the same procedure in the proof of Thm. 1
where Cy,;, = Zf\le Ch. O

While we define the metrics and MP vectorizations for a
2-parameter case, it can naturally be adapted to any multipa-
rameter case. Similarly, the proof can easily be adapted to
higher dimensional images. In this paper, we utilize Silhou-
ette and Betti curves as the vectorization method . while
Betti curves are not stable with respect to the bottleneck

(Wyo) distance [2], they are stable with respect to the W -
metric [14]. On the other hand, Silhouette vectorizations are
stable as they are derived from persistence landscapes [7, 11].
Therefore, by applying Thm. 1 to these vectorizations, we
have the stability for both MP Betti and MP Silhouette vector-
izations, we employed in this paper. Furthermore, adapting
the stability result given in [26] to our setting, one can obtain
another proof for the stability of MP Betti vectorization with
respect to a signed Wasserstein-1 distance, a bottleneck-type
metric they introduce.

B. Multiparameter Persistence Theory

Multipersistence theory has garnered significant research
interest due to its potential to enhance the performance and
robustness of single persistence theory. While single per-
sistence extracts topological features from a one-parameter
filtration, a multidimensional filtration with multiple param-
eters should, in principle, provide a richer and more informa-
tive summary for machine learning applications. However,
technical challenges in the theory have hindered its full real-
ization, leaving multipersistence largely unexplored in the
ML community. Here, we summarize these key challenges.
For a more detailed discussion, [5] provides an overview of
the current state of the theory and its major obstacles.

In single persistence, the threshold space {«; } is a totally
ordered subset of R, meaning that any topological feature
appearing in the filtration sequence {A;} has a well-defined
birth and death time, with birth occurring before death. This
ordering property allows for the decomposition of the persis-
tence module M = {Hy(A;)}X, into barcodes, a concept
formalized in the 1950s through the Krull-Schmidt-Azumaya
Theorem [5] (Theorem 4.2). This decomposition forms the
basis of what is known as a Persistence Diagram.

However, in higher dimensions (d = 2 or more), the
threshold set {(«;, 3;)} is only partially ordered (a poset),
meaning that while some indices have a clear ordering (e.g.,
(1,2) < (4,7)), others do not (e.g., (2,3) vs. (1,5)). Con-
sequently, in a multipersistence grid {A;;}, birth and death
times are no longer well-defined. Furthermore, the Krull-
Schmidt-Azumaya Theorem does not extend to higher di-
mensions [5] (Section 4.2), making barcode decomposition
impossible for general multipersistence modules. This funda-
mental limitation prevents a straightforward generalization
of single persistence to multipersistence. Even in cases where
a meaningful barcode decomposition exists, the challenge
remains of faithfully representing these barcodes due to the
inherent partial ordering. Multipersistence modules are an
active area of research in commutative algebra, with further
details available in [15].

Despite these challenges, several approaches have been
proposed to leverage the multipersistence framework [21].
One of the earliest methods, introduced by [22], involves
analyzing one-dimensional slices of the multipersistence
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Figure 1. Datasets. Example images from ISIC dataset (top
row) [13], CBIS-DDSM dataset (middle row) [20], Glaucoma
dataset (bottom row) [27, 29].
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Figure 2. Filtration learning. Some of the compact multifiltration
representations and the corresponding bifiltrations from the first
layer of our U-Net backbone Topo-MP network on PASCAL VOC
2012 dataset.

grid to extract the most dominant features. Later, [8] ex-
panded this idea by considering multiple slicing directions
(vineyards) and summarizing multiple persistence diagrams
(PDs) into a vectorized representation. These slicing-based
techniques extract persistence diagrams from predetermined
one-dimensional slices and aggregate them into a lower-
dimensional summary [5]. However, this approach presents
two major issues: (1) the topological summary heavily de-
pends on the chosen slicing directions, making direction
selection a nontrivial problem, and (2) compression of in-
formation from multiple persistence diagrams may lead to
significant information loss.

A different approach to vectorizing multipersistence mod-
ules was introduced by Vipond [32], who extended persis-
tence landscapes into higher dimensions. Unlike slicing-
based methods, this approach does not rely on a predeter-
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Figure 3. Toy illustration of bifiltration. For a given image X with two
color channels, our color multifiltration produces 9 binary images in 3 X 3
¢grid. In horizontal directions, we activate (coloring yellow) the pixels whose
red color value is below the given threshold. In vertical direction, we only
consider blue color values to activate the pixels.

mined global slice direction. Instead, for each point x € R"™,
where n is the dimension of the multipersistence module,
the k"-landscape explores the widest direction in which the
rank invariant has a nontrivial image. From this perspec-
tive, the Multipersistence Landscape can be seen as a more
faithful representation of the multipersistence module. While
this method is particularly effective in settings where key
insights come from a few dominant topological features
(e.g., point clouds or sparse data), its computational com-
plexity limits its practicality for large datasets with many
topological features. Recently, [10] introduced the meta-rank
and meta-diagram as novel invariants for 2-parameter per-
sistence modules, demonstrating their equivalence to the
rank invariant and signed barcode while providing compu-
tational improvements and an intuitive visualization as a
persistence diagram of diagrams. Again, very recently, [24]
extends stable vectorization techniques from one-parameter
to multiparameter persistent homology by leveraging signed
barcodes as signed Radon measures, enabling the computa-
tion of informative and provably stable feature vectors that
enhance performance in topology-based data analysis.

While these approaches effectively capture dominant
topological patterns in sparse data, their applications are
largely limited to point cloud and graph settings. In contrast,
our approach offers a more computationally efficient and
versatile vectorization for cubical multipersistence, where
the key topological signatures mostly arise from tracking
the density of small features, making it suitable for image
analysis.

C. Common Multifiltrations for Images

There are several natural multifiltration methods for cubical
persistence the images offer. Here, we list some of them.

Bifiltrations on binary images. Let X’ be an image of size
r X s. A bifiltration induced from X is a collection of binary
images {X,, ,} of the same size where X, , C Xpy1.n
and X, , C Ay 1 foranyl <m < Mand1 <n < N.



Table 1. Limited Data performances (ISIC and CBIS-DDSM). Performance of the baseline Swin model and hybrid models incorporating
Single Persistence (Swin-SP) and Multi-Persistence (Swin-MP) outputs under limited data conditions. The model was trained on X% of the
dataset (specified in the first column) while using the original test set for evaluation, with early stopping based on validation accuracy. Both
datasets are evaluated and averaged over 4 different seeds, with standard deviations reported after +. Best AUC results are given in bold,

while best accuracy results are given in blue for each setting.

ISIC CBIS-DDSM
Swin [23] TopoSwin-SP* TopoSwin-MP* Swin [23] TopoSwin-SP* TopoSwin-MP*
Data % Acc AUC ‘ Acc AUC ‘ Acc AUC H Acc AUC ‘ Acc AUC ‘ Acc AUC
0.05 66.62 +423 87.15+3.85 | 6592444 8420+6.75 | 68.74 £3.32 8594 +3.17 || 5852 +£4.44 63.34 £1.68 | 58.72 £2.03 62.81 +£3.27 | 59.35 £3.26 61.10 = 1.62
0.10 7390 +2.15 9148 £0.58 | 74.01 +1.88 91.64 + 1.01 | 7445 +1.59 90.71 £+ 1.59 || 60.80 +2.00 60.60 +3.15 | 59.40 +2.37 61.70 +2.47 | 61.79 + 0.88 64.31 + 3.13
0.20 7738+ 1.08 93.65+0.38 | 77.62 + 1.94 93.80 + 1.17 | 77.58 £ 0.68 93.07 £0.28 || 62.50 + 1.82 69.04 + 1.16 | 63.21 £3.69 69.08 + 0.96 | 63.38 + 1.81 67.25 + 0.83
0.50 80.82 £ 1.73 9546 +0.83 | 79.65+0.50 94.80 £0.65 | 81.64 £ 0.62 9533 +0.89 || 67.95+ 146 74.92+1.24 | 67.53£0.94 7322+ 1.85 | 68.61 +1.13 74.46+ 1.36
1.00 82.67+ 126 95.62+£0.15 | 8250+ 1.17 95.63 £0.71 | 83.02£0.35 9593+ 0.55 || 6847 +£1.76 7553 £0.77 | 69.38 £0.97 75.89 +£0.97 | 69.60 = 0.72 76.84 + 0.94

Table 2. Limited Data performances (Glaucoma). Performance
of the baseline Swin model and hybrid models incorporating Single
Persistence (Swin-SP) and Multi-Persistence (Swin-MP) outputs
under limited data conditions. The model was trained on X% of the
dataset (specified in the first column) while using the original test
set for evaluation. Best AUC results are given in bold, while best
accuracy results are given in blue for each setting.

Glaucoma
Swin [23] TopoSwin-SP*  TopoSwin-MP*
Data% Acc AUC ‘ Acc AUC ‘ Acc AUC
0.05 79.47 8530 | 67.57 72776 | 78.10  88.04
0.10 7852 8942 | 7326 89.33 | 78.74  89.05
0.20 82.95 92.00 | 82.31 91.34 | 82.52  90.63
0.50 81.68 90.94 | 83.57 91.63 | 81.89  92.64
1.00 82.73 9224 | 8295 9290 | 84.63 92.87

In other words, a bifiltration defines a grid G of size M x N
where each individual row and column represents a regular
filtration as shown in Fig. 3, i.e., for any fixed 1 < mg < M
(row), the sequence {X,,,, ,, }1 is a regular filtration of length
N (column), and for any fixed 1 < ny < N, the sequence
{Xom.no 1 is a regular filtration of length M.

Color multifiltrations.. The primary objective of multi-
parameter persistence lies in effectively leveraging multi-
ple parameters, especially when data offers more than one
function to utilize. In color images, each image inherently
comprises three natural functions, denoted as R, GG, and B.
Thus, for every pixel A;;, there exist corresponding color
values: R;;, Gi;, Bi; € [0,255]. To proceed, we establish
a three-parameter multifiltration with parameters {sm}iv ',
{tn ivz, {vr}iv?’, where s, t,, v, € [0,255] are threshold
values for color channels R, G, and B respectively. By sim-
ply defining binary images Xy, »,» = {A;; C X | R;j <
Sm, Gij < tpn,Bi; < v}, we induce a three-parameter mul-
tipersistence module { Hy, (X, )}, yielding Betti tensors
By (X) = [Bp, n.]- These tensors constitute 3D arrays with
dimensions Ny X Ny x N> (See Fig. 3).

Erosion bifiltrations.. One significant limitation of sublevel
filtration is its inability to provide information about the

sizes of topological features. Instead, it only focuses on the
difference in function values between when a topological
feature is born and when it dies. To illustrate, consider a
grayscale image where all pixels have a grayscale value of 0
except for one pixel in the center with a value of 255. The
resulting persistence diagram would feature a single large
bar [0, 255), indicating a very small topological feature—a
hole with a diameter of 1. Conversely, a binary image in
X100 might contain a large hole with a diameter of 20, where
the pixels of the hole have color values between 101 and
105, then it will be completely filled in by &’;g5. Despite the
significant change in the hole’s size, the grayscale sublevel
filtration would only yield a small bar (100, 105) reflecting
the difference in grayscale values (color contrast of the hole),
without conveying any information about the hole’s size.

While persistence homology aims to identify the topolog-
ical features present in a filtration, sublevel filtrations cannot
inherently capture size information for these features. How-
ever, alternative filtration methods such as erosion, dilation,
and signed distance filtrations have been proposed to address
this issue [17]. These methods offer avenues to incorporate
size information into the analysis of topological features,
complementing the capabilities of sublevel filtration.

To capture topological features created by the images as
well as their sizes, a natural approach is to combine grayscale
sublevel filtration with erosion filtration. Erosion filtration
is defined for binary images, and basically, it is a sublevel
filtration for a special function, called erosion. Let X be
a grayscale image of size r x s, and let {X,,}} be the
sublevel filtration induced by grayscale values described in

X X

Figure 4. Erosion Filtration. For a given binary image X', we first define
the erosion function (given in Xp). Then, we obtain the filtration of binary
images Xo C X7 C ... A3, by activating the pixels reaching the threshold
value.



Section 3. Each &, is a binary image with some topological
features. Let €2, represent all black pixels in X,, and G
is r x s grid. Then, for each &,,,, we define an erosion
function &, : G — N such that &,,(4,5) = D(Qm, Asj)
where D is the Manhattan (L) metric between the pixel
A;; and the black region Q,,. In other words, &, (40, jo) =
inf{lio — '| + |jo — j'| | Airjy C Qp}. In particular, for
each A;; € Qy,, &,,(4, ) = 0. Intuitively, erosion function
& gives 0 values to all black pixels in the binary image
X, and measures the L, distance of each white pixel to
black region €2,,, in X, (See Fig. 4). Then, for each m, the
bifiltration {X,, ,,} is defined as the collection of binary
images X, , = {Ay; € X | &,(4,5) < n}. Hence, if
there is a white hole in &, the value d of the farthest pixel
in the hole to €2,,, measures the radius of the whole, and
produces a bar of size [0, d) in the persistence diagram. In
a way, erosion filtration is enabling to measure the size of
the wholes in binary images. Recall that the persistence bars
for sublevel filtration for color values only give the color
difference (contrast) of the hole independent of the size of
the hole. Therefore, color filtration and erosion filtration
are completely complementary to each other, and combining
them produces a very powerful filtration model for the image.
Signed distance and dilation are other types of filtrations to
capture the size of the topological features in binary images,
similar to erosion filtration [17].

D. Implementation Details

In Algorithm 1, we present the main algorithm for our CUDA
GPU implementation of Cubical Persistence and Cubical
Multiparameter Persistence. The two main C++/CUDA func-
tions are further explained in Algorithm 2 and Algorithm 3.
Our implementation is influenced by the CPU-based Cubical-
Ripser software [19] for SP. We utilize the duality between
top-dimensional cell and vertex constructions in persistent
homology [4] to efficiently compute 0" and 1%* dimensional
homology of 2D images with only minor modifications to the
algorithm. The compact multifiltration inputs (corresponding
to N MP filtration inputs with C' row-wise slices) are used
to construct an input grid whose structure depends on the
target dimension. For the 0" dimension, the compact filtra-
tion input is padded with a threshold value (a constant input
representing infinity), corresponding to a primal grid. For
the 1*' dimension, the input values are padded with thresh-
old, inverted, and then padded again, corresponding to an
Alexander Duality-based dual grid. Following this, Algo-
rithm 2 iterates over all edges (horizontal and vertical for
both dimensions, plus diagonal edges for the 1% dimension),
computes filtration values based on the compact filtration in-
puts in parallel over the batch, width, and height dimensions,
and finally sorts the values in a descending order.

In Algorithm 3, we use a union-find-based algorithm with
a CUDA-adapted implementation of Union-Find [31] with

path compression and union by rank. The initialization of
the union-find data structure is parallelized over each batch
element and each pixel. The main loop, which calculates
persistence pairs by iterating over edges sorted by decreasing
death times, is parallelized only over the batch dimension.
Since the number of persistence pairs can vary per input and
is not known beforehand, we use a chunking mechanism.
Based on a provided chunk size hyperparameter, the loop is
executed until a maximum of chunk size pairs are generated
for each batch element, while the number of persistence pairs
is tracked separately. The kernel for this loop is executed
iteratively until the computation for each batch element is
complete. The resulting chunks are then concatenated and
processed in parallel. This approach allows variable-length
persistence pair outputs and can be further optimized by
fine-tuning the chunk size hyperparameter for a given task.

Finally, we extract the final persistence pairs using the
coordinate locations that correspond to the birth and death
values in the original MP filtration. The algorithm’s output
for variable-length persistence pairs consists of two tensors:
a zero-padded tensor containing the persistence pairs for
each batch element and row-wise slice, and a separate tensor
storing the lengths for each batch element and row-wise slice.
This output is then processed by our CuMPerLay vectoriza-
tion layer, which takes masked persistence pair tensors as
inputs. While we typically use a chunk size of 1024, this
hyperparameter can be dynamically adjusted during training
based on the maximum number of persistence pairs observed
in recent batches.

Algorithm 1: Cubical Persistence for 2D Images

Input :Image filtration batches
Ibatch € RNXCXHXW (C I'OWS),
threshold T’
Output : Persistence pairs P, Lengths L
I + Reshape(Ipatcn, (N - C, H,W));
Bist; Llist — []7 []7
ford € {0,1} do
// Prepare grid for dimension d
4 G < PadGrid(!, value = T, d)
// Compute persistence
V, Idx < EnumerateAndSortEdges(G, d);
C, Lq < JointPairs(G,V, Idx, d)
P,; + ExtractPersistenceValues(C, I, d);
Pyisi.append(Py);
Ly;st.append(Lg);

W N -

DI -REE N B )]

// Combine and reshape results
10 P + PadAndStack(P;s:);
1 L+ Stack(Ly;st);
12 P, L < ReshapeToOriginal(P, L, (N, C,...));
13 return P, L;




Algorithm 2: EnumerateAndSortEdges

Input :Grid G € REXXW dimension d € {0,1}
Output : Sorted filtration values V/,
Sorted indices Idx
// Define edge connectivity
1 if d = 0 then
// Horizontal and vertical edges
2 Offsets < {(1,0),(0,1)}
3 else
// Include diagonal edges
4 L Offsets < {(1,0), (0,1), (1,1), (1,—1)}
5 Elist — []
// Compute filtration values (CUDA)
6 for each image in batch G in parallel do
7 for each pixel v = (x,y) in image in parallel do

8 for each offset o € Offsets do

9 U< v+ 0;

10 value + max(G(v), G(u));
11 Ej;s¢.append(value);

// Sort edges by filtration values
12 V, Idx + SortAndGetIndices(FE;s¢, order =
descending);
13 return V, Idz;

Algorithm 3: JointPairs

Input :Grid G € REXHXW Sorted filtr. values V,
Sorted indices Idx, dimension d € {0,1}
Output : Paired cell coordinates C', Lengths L
// Initialize components for
pairing

1 UF < InitializeUnionFind();

2 for each vertex v € G in parallel do

3 L UF.Add(v, birth = GetVertexBirth(G, v));

Clist < [;
// Parallel over batch B (CUDA)

N

5 for each edge e in the sorted filtration (V, Idx) do

6 u, v < GetVerticesOfEdge(e);

7 700ty T00t, < UF.Find(u), U F.Find(v);

8 if root, # root, then

9 birth,,, birth, «

U F.GetBirth(root,, ), U F.GetBirth(root,);

10 if birth,, > birth, then

1 C}ist.append((coord(root,, ), coord(e)));
12 U F.Union(root,,, root,, birth = birth,,);
13 else

14 C}ist-append((coord(root,), coord(e)));
15 U F.Union(root,,, root,, birth = birth,, );
16 if d = O then

17 700t essential <— GetFinalComponent(U F);

18 Clist-append((coord(r00otessential), €00rdin £));

19 C, L + FormatAndPack(Cj;st);
20 return C, L;
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Figure 5. Learned MP Filtration examples for sample images from ISIC dataset [13] for our model TopoSwin-MP with corresponding input
images on top. Each slice is a compact representation of one row-wise slice of the learned multifiltration from the input layer, layer 1 and
layer 2 learnable cubical multipersistence modules.



Figure 6. Learned MP Filtration examples for sample images from CBIS-DDSM dataset [20] for our model TopoSwin-MP with corresponding
input images on top. Each slice is a compact representation of one row-wise slice of the learned multifiltration from the input layer, layer 1
and layer 2 learnable cubical multipersistence modules.
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Figure 7. Learned MP Filtration examples for sample images from Glaucoma dataset [27, 29] for our model TopoSwin-MP with corresponding
input images on top. Each slice is a compact representation of one row-wise slice of the learned multifiltration from the input layer, layer 1
and layer 2 learnable cubical multipersistence modules.
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Figure 8. Learned MP Filtration examples for sample images from PASCAL VOC 2012 dataset [16] trained with FCN-Resnet 50 [25]
backbone Topo-MP with corresponding input images on top. Each slice is a compact representation of one row-wise slice of the learned
multifiltration from the layer 1 and layer 4 learnable cubical multipersistence modules.
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Figure 9. Learned MP Filtration examples for sample images from PASCAL VOC 2012 dataset [16] trained with U-Net [28] backbone
Topo-MP with corresponding input images on top. Each slice is a compact representation of one row-wise slice of the learned multifiltration
from the layer 1 and layer 4 learnable cubical multipersistence modules.
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