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Appendix

A. Dataset Statistics
In this section, we aim to provide more detailed statistics on
the proposed dataset.

Sensor Configurations. Our sensor configurations are pre-
sented in details in Section 3. We employ a custom profile
from Project Aria [3] that best fits our demand on the dataset
construction. The RGB sensor (10 FPS) is rolling shutter, so
we did not use it in the evaluation of this paper, but it is pro-
vided in the dataset as one of the modalities. Therefore, we
use the two available SLAM cameras or the multi-camera in-
ertial setup in our evaluation. The two SLAM cameras are on
the sides of the glasses and thus do not have enough overlap
to support horizontal stereo setup (as shown in Fig. 1).

Controlled Experimental Set. The controlled experimental
set consists of sequences with four different levels of diffi-
culties. The first three levels (I, II, III) are platform-based
with handheld artificial motion, to mimic the setup of the
commonly used academic datasets [1]. Specifically, we put
the Aria glasses on a self-assembled carton platform (as in
Fig. 2). The recordings in level IV are egocentric in nature,
with controlled initial motion to help mitigate issues in IMU
initialization. The motion patterns gradually become more

*indicates equal contribution

Figure 1. The overlap of the two SLAM cameras is severely
limited, making it hard to evaluate in horizontal stereo mode.
Top: The original SLAM image pair, Bottom: The SLAM image
pair after stereo rectification.

complex for the four levels, as discussed in Sec. 3 in the
main paper.

Fig. 6 further shows visualizations of different motion
patterns for the four levels respectively. Level II includes
out-of-plane rotation while level III has fast and complex
movements with significant vertical motion. In level IV, the
data is recorded with head-worn glasses and exhibits natural
head motion that is common in egocentric data.

Main Dataset. The main dataset is categorized into five
groups in the evaluation. We first group all recordings that
cover low-light conditions or moving platforms into two
specific challenge groups, and then categorize the rest of the
recordings by number of covered CPs. The detailed statistics
for each recording, along with the covered challenges, are



Figure 2. The setup of the self-built platform for the capture of
level I, II, III recordings in the controlled experimental set.

Figure 3. Histograms on the distribution of recording duration and
length in the main dataset.

listed in Tab. 8 and Tab. 9. While most sequences are egocen-
tric, we also have a few sequences where we hold the Aria
glasses in hand. Depending on the trajectories, our sequences
can be categorized into three types: random walking (rw),
A-to-B sequence (a b), which connect two distant areas, and
sequences that include densely mapping an area (dma). The
last type of sequence enables applicability of our dataset on
benchmarking multi-sequence algorithms. The sequence du-
ration varies from 5min to 48min, covering trajectories that
span kilometers. We also provide indicators on the presence
of specific challenges in each sequence. Fig. 3 shows the
histogram of duration and length for all the 63 recordings in
our dataset.

B. More Details on Score Evaluation w.r.t. Con-
trol Points

Illustration on Different Score Levels We show in Fig. 4
nominal trajectories with different levels of scores, to help
better interpret the reported scores in the evaluation.

Score Evaluation on 3D. Since 72.3% (349 / 483) of the
CPs we have are 2D, we evaluate the score and recall on 2D
in the main paper to make use of all the CPs. For complete-
ness, we provide the 3D score evaluation in Tab. 1. Since we
use the same scoring function, the 3D scores are consistently
lower than the 2D ones, while the relative ranking of the
evaluated systems are not largely affected.

C. More Results
C.1. Variability Analysis
We report variability of the 2D scores reported in the main
paper for the evaluated systems in Tab. 2. Since we run
the baseline on each sequence for three times, we get three
evaluated scores xi1, xi2, and xi3 for each sequence i, on

which we take the average:

x̄i =
xi1 + xi2 + xi3

3
(1)

We want to estimate the standard deviation of the average
score reported in each group (over n sequences):

x̄ =
1

n

n∑
i

x̄i. (2)

The unbiased estimate (with Bessel’s correction) of the
standard deviation of x̄ follows:

σx̄ =

√√√√ 1

6n(n− 1)

n∑
i=1

3∑
j=1

(xij − x̄i). (3)

Table 2 reports the standard deviation of the 2D scores
for the evaluated methods, among which ORB-SLAM3 has
the largest variability in the 2D score evaluation.

C.2. Scale and Gravity
We further evaluate the scale and gravity of two top-
performing methods in our benchmark: OpenVINS [5] and
Aria’s SLAM. Specifically, after getting the similarity trans-
formation with sparse alignment, we calculate the scale error
(in percentage) as 100|s − 1| and the gravity error (in de-
gree) as the angular deviation between the rotation in the
transformation and the ideal vertical direction. Results are
shown in Tab. 3. To identify if Aria’s SLAM suffers from
negative scale drift, we further calculate the average value of
the scale during sparse alignment across all 63 sequences in
four categories: short, medium, long, and low light. Aria’s
SLAM has an average scale of 1.00222, which represents a
negative scale drift of 0.22%.

D. More Details on Accuracy Validation
D.1. Surveying Statistics
To validate the accuracy of public data of control points,
we additionally measure each of the CP three times with
GNSS-RTK, on different days. Our measurements have an
uncertainty of ∼1.5cm horizontally and 3cm vertically ac-
cording to the calibration of our surveying instrument. Fig. 5
show the distribution of the errors between our measure-
ments and the public control points. Horizontally, the error
closely follows a Gaussian distribution with a standard de-
viation of 2.4cm. Safely assuming that our measurement is
independent to the public CP data, we manage to get a simi-
lar estimate to the ∼1cm uncertainty claimed by the public
CP data. This validates the reliability of our main benchmark
on evaluating 2D scores with sparse alignment. Since the
vertical measurement is often missing in the public CP data,
the data points for the vertical errors are sparser. Nonethe-
less, the distribution of the vertical errors indicate that the z
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Figure 4. Visualization of nominal trajectories with different scores. The trajectories are transformed via sparse alignment between the
triangulated points (in green) and the target control points (in black).

method short medium long challenge – low-light challenge – moving platform

2D score↑ 3D score↑ 2D score↑ 3D score↑ 2D score↑ 3D score↑ 2D score↑ 3D score↑ 2D score↑ 3D score↑

DPVO 9.4 3.8 5.2 1.4 1.2 0.3 3.4 1.0 2.4 1.0
DPV-SLAM 7.5 3.5 5.2 2.0 0.4 0.1 1.9 1.2 1.7 0.1

Kimera VIO 6.3 4.2 6.6 4.4 6.3 3.9 4.2 2.5 7.1 2.9
ORB-SLAM3 28.3 18.6 20.3 12.4 14.2 7.3 6.2 2.8 15.7 8.0
OpenVINS 18.1 13.1 10.9 7.5 4.7 2.6 7.9 5.3 2.4 1.6
OpenVINS + Maplab 22.9 15.8 13.1 9.6 5.8 3.6 9.6 5.2 3.7 2.6

OpenVINS 22.2 17.1 17.8 12.7 10.6 7.6 16.9 13.3 11.5 8.6
OpenVINS + Maplab 26.0 19.6 21.3 14.3 12.6 7.8 16.5 12.4 13.0 9.5
OKVIS2 24.2 20.5 13.6 9.9 3.6 1.7 15.4 11.0 4.2 3.4

Aria’s SLAM 90.7 87.7 78.5 73.6 70.8 65.9 84.2 82.1 53.6 46.1

Table 1. Score evaluation on 2D and 3D.
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Figure 5. Distribution of the horizontal (left) and vertical (right)
errors between our GNSS-RTK measurements and the public CP
data.

dimension of the control points is centimeter accurate and is
sufficient to support the construction of our pseudo ground
truth.

D.2. Validation of Our Visual-Inertial Optimization
Since Aria’s SLAM is a closed-source system, we develop
our custom visual-inertial optimization framework to facili-
tate the construction of dense pseudo-GT poses. To validate
the visual optimization, we add Gaussian noise to both the
factory calibrations and the camera poses. Our bundle adjust-
ment is capable of recovering the original focal length and
camera poses. To further validate the inertial optimization,
we perform oracle experiments on a stationary recording,
i.e., a sequence with negligible device motion. Our inertial
optimization on the bias terms is able to compensate noise
added on top of the rectified IMU measurements.

D.3. Covariance Estimation
To know when this pseudo-GT is reliable, we compute un-
certainties on the device poses as the inverse of the Hessian
matrix of the least-squares optimization (Laplace’s approxi-
mation). We calculate all the 6x6 on-manifold pose covari-

Level I: platform-based, controlled motion

Level II: platform-based, out-of-plane rotation

Level III: platform-based, fast and complex motion

Level IV: egocentric recordings

Figure 6. Qualitative visualizations of the nominal motion patterns
in the four levels of controlled experimental set.

ance from our joint optimization on a test sequence with 12
control points available. The median value of the positional
uncertainty across sequences is 20.0 centimeters. Although
our dense pseudo ground truth poses is not as accurate as our
survey-grade control points, they are sufficiently accurate
to measure keyframe errors larger than 50.0 centimeters for



method short medium long low-light moving platform

DPVO 9.4 ± 0.8 5.2 ± 1.5 1.2 ± 0.2 3.4 ± 0.7 2.4 ± 0.5
DPV-SLAM 7.5 ± 0.3 5.2 ± 1.3 0.4 ± 0.6 1.9 ± 0.8 1.7 ± 0.5
Kimera VIO 6.3 ± 0.7 6.6 ± 0.9 6.3 ± 1.0 4.2 ± 1.2 7.1 ± 1.0
ORB-SLAM3 28.3 ± 2.7 20.3 ± 2.5 14.2 ± 1.4 6.2 ± 3.5 15.7 ± 2.6
OpenVINS 18.1 ± 0.9 10.9 ± 1.0 4.7 ± 0.6 7.9 ± 1.1 2.4 ± 0.5
OpenVINS + Maplab 22.9 ± 1.3 13.1 ± 1.3 5.8 ± 0.6 9.6 ± 1.2 3.7 ± 1.0
OpenVINS 22.2 ± 0.8 17.8 ± 0.7 10.6 ± 0.8 16.9 ± 2.1 11.5 ± 1.6
OpenVINS + Maplab 26.0 ± 1.4 21.3 ± 1.4 12.6 ± 0.7 16.5 ± 2.0 13.0 ± 1.8
OKVIS2 24.2 ± 0.4 13.6 ± 0.8 3.6 ± 0.5 15.4 ± 1.3 4.2 ± 0.9

Table 2. Variability analysis of the reported 2D scores.

method short medium long low light moving platform

scale gravity scale gravity scale gravity scale gravity scale gravity

OpenVINS 6.38 3.79 7.52 5.34 × × × × × ×
Aria’s SLAM 0.15 0.18 0.19 0.39 0.24 0.40 0.23 0.20 × ×

Table 3. Evaluation of scale error (in percentage) and gravity error (in degree) for OpenVINS [5] and Aria’s SLAM. We mark ×if the method
fails to output a full trajectory in any sequence from the group.

Level I (3 sequences)

Sequence ID motion # CPs duration (in min) length (in km)

R 01 easy platform-based N/A 2.41 0.16
R 02 easy platform-based N/A 2.48 0.18
R 03 easy platform-based N/A 2.64 0.20

Average - N/A 2.51 0.18

Level II (4 sequences)

Sequence ID motion # CPs duration (in min) length (in km)

R 04 medium platform-based N/A 4.38 0.32
R 05 medium platform-based N/A 5.13 0.47
R 06 medium platform-based N/A 6.51 0.62
R 07 medium platform-based N/A 6.67 0.60

Average - N/A 5.67 0.50

Level III (3 sequences)

Sequence ID motion # CPs duration (in min) length (in km)

R 08 hard platform-based N/A 10.27 0.75
R 09 hard platform-based N/A 13.01 0.94
R 10 hard platform-based N/A 15.60 1.34

Average - N/A 12.96 1.01

Level IV (3 sequences)

Sequence ID motion # CPs duration (in min) length (in km)

R 11 5cp egocentric 5 7.96 0.48
R 12 10cp egocentric 10 16.90 1.01
R 13 15cp egocentric 15 23.44 1.17

Average - 10 16.10 0.89

Table 4. Detailed statistics for the controlled experimental set.

trajectories that span kilometers.

E. Inertial-only optimization
Traveling in a moving platform poses unique challenges for
visual-inertial odometry and SLAM due to the inconsistency
between the visual signals and the actual motion. When
the camera is moving with the vehicle, the visual features
inside the vehicle are potentially misleading and only give
constraints to the relative motion between the camera and
the vehicle. This often results in tracking failures of visual-
inertial systems, including Aria’s SLAM API.

As discussed in the main paper, in the moving platform

Figure 7. Result of inertial-only optimization on a moving plat-
form. While the visual constraints can potentially mislead the
motion estimation, one can achieve reasonable results (left) by
optimizing only with inertial preintegration factors [4] and control
points. However, the inertial-only optimization results suffer from
local flickering (right) and are thus not sufficiently accurate to be
used as dense pseudo GT poses for per-keyframe evaluation.

Method

outdoor
walking

exposure
change

low
light

fast
motion

dynamic
scenes

R@50cm↑ R@50cm↑ R@50cm↑ R@50cm↑ R@50cm↑

COLMAP 28.3 23.9 7.5 46.3 80.0
GLOMAP 64.1 42.9 15.6 78.5 62.7
ORB-SLAM3 31.3 21.8 14.7 40.5 31.7

ORB-SLAM3 41.7 40.9 17.5 61.0 89.2
OpenVINS 54.7 55.1 22.2 74.6 34.3

Table 5. Evaluation results on selected short snippets w.r.t. our
dense pseudo ground-truth poses.

section, we may rely only on the inertial and CP information
for our joint optimization, while dropping the visual con-
straints. As shown in Fig. 7, the inertial-only optimization
achieves reasonable trajectory prediction that aligns with the
movement of the vehicle. However, due to lack of accurate
per-frame measurements in the optimization, the resulting
poses suffer from local flickering and is thus not accurate
enough to serve as the pseudo ground truth in the evaluation.

F. A Study on Short Snippets
To evaluate against methods that are comparably heavy and
that cannot scale well to the long sequences, we select shorter
2-min segments from the sequences. In particular, we focus



Additional set

Sequence ID motion type # CPs duration
(in min)

length
(in km) challenge

Sequence 1-19 egocentric rw 14 15.31 1.53 short
Sequence 1-20 egocentric rw 13 16.90 1.72 short
Sequence 2-11 egocentric dma 18 19.80 2.05 medium
Sequence 2-12 egocentric dma 20 27.95 3.07 medium
Sequence 3-17 egocentric a b 27 29.90 3.09 long
Sequence 3-18 egocentric a b 24 28.25 2.74 long
Sequence 4-10 egocentric dma 16 23.70 2.23 low light
Sequence 4-11 egocentric dma 15 18.80 1.79 low light
Sequence 5-11 egocentric dma 14 18.76 1.76 moving platform
Sequence 5-12 egocentric dma 18 22.23 - moving platform

Table 6. Detailed per-sequence statistics for the additional set
(for the data release as described in Appendix G).

on parts where Aria’s SLAM is the most accurate and the
dense ground truth is sufficiently accurate, while also cover-
ing unique egocentric challenges in the dataset. This results
in a total of 27 sequence categorized in five groups: outdoor
walking (9 sequences), exposure change (6 sequences), low
light (3 sequences), fast motion (6 sequences), and dynamic
scenes (3 sequences). We evaluate two widely recognized
SfM methods: COLMAP [7] and GLOMAP [6], and include
the top-performing VIO/SLAM methods on our benchmark:
ORB-SLAM3 (monocular and monocular-inertial) [2] and
OpenVINS (monocular-inertial) [5]. The SfM pipelines are
unable to produce a decent output on our full-length se-
quences, so we only run them on the selected snippets. Simi-
lar to the practice for the full-sequence evaluation, we feed
in the factory calibration for each of tested method and apply
undistortion beforehand if necessary.

Table 5 presents the recall evaluation at 50 centimeters
using our dense pseudo ground-truth poses. The results in-
dicate that while structure-from-motion (SfM) methods are
not specifically designed for video sequences, they achieve
higher accuracy compared to monocular SLAM approaches.
This can be attributed to their offline nature, which allows for
large-scale bundle adjustment. However, visual-inertial sys-
tems demonstrate superior performance over both SfM and
visual odometry/SLAM methods in challenging conditions,
such as facing exposure variations or low-light environments,
where visual cues are less reliable.

G. Data Release

Our training set comprises 13 sequences of the controlled
experimental set and 10 additional sequences (two for each
of the five main dataset challenge categories). The statistics
and benchmarking for the 10 additional sequences are given
in Tab. 6 and Tab. 7. For every training sequence we release
the raw data, factory calibrations, sparse and pseudo-dense
ground-truth. The test set consists of all 63 sequences from
the main dataset, for which we release only the raw data and
factory calibrations.

H. More Visualizations
We provide more qualitative examples of the recordings in
Figures 8, 9, and 10 covering challenges that are unique to
egocentric data.



method causal short medium long challenge – low-light challenge – moving platform

score↑ CP@1m↑ R@5m↑ score↑ CP@1m↑ R@5m↑ score↑ CP@1m↑ R@5m↑ score↑ CP@1m↑ R@5m↑ score↑ CP@1m↑ R@5m↑

DPVO ✓ 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.4 0.9 0.0 2.7 1.5 0.0 –
DPV-SLAM x 0.0 0.0 1.2 1.3 0.0 2.1 0.0 0.0 0.5 1.7 0.0 3.2 1.3 0.0 –

Kimera VIO ✓ 7.8 0.0 13.2 1.7 2.7 2.0 4.9 2.0 8.7 17.7 3.1 44.1 10.0 6.3 –
ORB-SLAM3 x 11.2 0.0 27.1 0.0 0.0 0.0 4.2 0.0 7.8 0.0 0.0 0.0 19.8 2.7 –
OpenVINS ✓ 25.2 7.4 66.5 5.8 0.0 12.5 4.2 0.0 12.0 0.0 0.0 0.0 6.7 2.7 –
OpenVINS + Maplab x 27.1 7.6 69.3 6.0 0.1 15.1 4.7 0.0 12.9 0.0 0.0 0.0 7.3 2.8 –

OpenVINS ✓ 33.2 8.3 86.6 12.4 2.8 23.5 5.5 0.0 11.9 9.9 3.3 22.8 9.2 0.0 –
OpenVINS + Maplab x 35.3 9.1 88.1 12.8 3.0 25.7 5.7 0.0 12.1 10.2 3.5 23.1 9.4 0.0 –
OKVIS2 x 36.7 11.2 78.6 9.9 0.0 22.2 12.3 0.0 38.8 1.1 0.0 2.1 20.3 3.6 –

Aria’s SLAM x 96.8 100.0 – 82.3 95.0 – 91.5 100.0 – 80.6 96.8 – 39.8 46.4 –

Table 7. Evaluation on the additional set. The 10 additional sequences were captured for the data release as described in Appendix G.



Group 1: Short (18 sequences)

Sequence ID motion type # CPs duration (in min) length (in km) low moving indoor-outdoor dynamic
light platform transition scenes

Sequence 1-1 handheld dma 12 15.97 1.16 x x x x
Sequence 1-2 egocentric dma 15 21.95 1.43 x x x x
Sequence 1-3 egocentric dma 13 17.95 1.05 x x ✓ x
Sequence 1-4 egocentric dma 15 23.77 1.63 x x x x
Sequence 1-5 egocentric dma 12 15.10 0.59 x x x ✓
Sequence 1-6 egocentric dma 11 18.52 0.94 x x x ✓
Sequence 1-7 egocentric dma 14 19.15 1.00 x x x x
Sequence 1-8 egocentric dma 14 17.92 0.85 x x x x
Sequence 1-9 egocentric dma 13 16.92 0.81 x x x x
Sequence 1-10 egocentric dma 15 19.87 0.90 x x x ✓
Sequence 1-11 egocentric rw 14 12.48 0.78 x x x x
Sequence 1-12 egocentric rw 13 19.00 1.04 x x x x
Sequence 1-13 egocentric rw 14 21.38 1.16 x x x ✓
Sequence 1-14 egocentric rw 15 20.03 1.19 x x x x
Sequence 1-15 egocentric rw 14 18.67 1.01 x x x ✓
Sequence 1-16 egocentric rw 14 19.15 1.14 x x x ✓
Sequence 1-17 egocentric rw 15 18.38 1.09 x x x x
Sequence 1-18 handheld dma 5 5.60 0.48 x x x x

Average - - 13.2 17.88 1.01 - - - -

Group 2: Medium (10 sequences)

Sequence ID motion type # CPs duration (in min) length (in km) low moving indoor-outdoor dynamic
light platform transition scenes

Sequence 2-1 handheld a b 21 28.42 1.65 x x ✓ x
Sequence 2-2 handheld a b 22 28.27 1.74 x x ✓ x
Sequence 2-3 egocentric dma 17 22.18 1.31 x x ✓ x
Sequence 2-4 egocentric dma 19 29.23 1.88 x x ✓ x
Sequence 2-5 egocentric dma 20 28.33 1.87 x x ✓ ✓
Sequence 2-6 egocentric dma 16 24.22 1.62 x x x x
Sequence 2-7 egocentric dma 16 22.25 1.53 x x ✓ x
Sequence 2-8 egocentric dma 16 13.35 0.69 x x x x
Sequence 2-9 egocentric dma 18 24.87 1.42 x x x ✓
Sequence 2-10 egocentric rw 18 21.15 1.27 x x x ✓

Average - - 18.3 25.23 1.46 - - - -

Group 3: Long (16 sequences)

Sequence ID motion type # CPs duration (in min) length (in km) low moving indoor-outdoor dynamic
light platform transition scenes

Sequence 3-1 handheld a b 27 33.40 1.84 x x x x
Sequence 3-2 handheld a b 26 28.53 1.67 x x x x
Sequence 3-3 handheld a b 26 33.87 1.79 x x x x
Sequence 3-4 egocentric a b 27 31.47 1.85 x x x ✓
Sequence 3-5 egocentric a b 27 29.27 1.79 x x ✓ ✓
Sequence 3-6 egocentric a b 27 29.78 1.71 x x x x
Sequence 3-7 egocentric a b 25 30.62 1.35 x x x x
Sequence 3-8 egocentric a b 30 42.83 2.60 x x x ✓
Sequence 3-9 egocentric a b 26 36.42 2.13 x x x x
Sequence 3-10 egocentric a b 28 48.00 2.87 x x ✓ ✓
Sequence 3-11 egocentric a b 27 40.63 2.35 x x x x
Sequence 3-12 egocentric a b 28 37.27 2.40 x x x x
Sequence 3-13 egocentric a b 26 35.70 2.35 x x x x
Sequence 3-14 egocentric a b 26 32.05 1.98 x x x x
Sequence 3-15 egocentric a b 26 37.37 2.30 x x x ✓
Sequence 3-16 egocentric a b 27 37.52 2.42 x x x x

Average - - 26.8 40.30 1.99 - - - -

Table 8. Detailed per-sequence statistics for the main dataset (short, medium, long).



Group 4: Challenge - low light (9 sequences)

Sequence ID motion type # CPs duration (in min) length (in km) low moving indoor-outdoor dynamic
light platform transition scenes

Sequence 4-1 egocentric a b 30 34.93 1.95 ✓ x ✓ x
Sequence 4-2 egocentric dma 16 26.75 1.64 ✓ x ✓ x
Sequence 4-3 egocentric dma 14 23.07 1.29 ✓ x x x
Sequence 4-4 egocentric dma 16 26.20 1.58 ✓ x x x
Sequence 4-5 egocentric dma 15 25.50 1.53 ✓ x x x
Sequence 4-6 egocentric dma 15 18.68 0.90 ✓ x x x
Sequence 4-7 egocentric dma 16 20.70 0.95 ✓ x x x
Sequence 4-8 egocentric dma 14 22.02 1.21 ✓ x x x
Sequence 4-9 egocentric dma 13 15.77 0.87 ✓ x x x

Average - - 16.5 23.41 1.32 - - - -

Group 5: Challenge - moving platform (10 sequences)

Sequence ID motion type # CPs duration (in min) length (in km) low moving indoor-outdoor dynamic
light platform transition scenes

Sequence 5-1 handheld a b 25 39.93 2.41 x ✓ x x
Sequence 5-2 handheld a b 27 32.32 2.33 x ✓ x x
Sequence 5-3 handheld a b 27 41.05 2.22 x ✓ ✓ x
Sequence 5-4 handheld a b 22 27.92 2.17 x ✓ ✓ x
Sequence 5-5 egocentric a b 27 35.20 ∼ 2.17 x ✓ ✓ x
Sequence 5-6 egocentric a b 29 41.43 ∼ 2.23 ✓ ✓ ✓ x
Sequence 5-7 egocentric dma 15 20.62 ∼ 1.10 x ✓ x ✓
Sequence 5-8 egocentric dma 15 21.12 1.08 x ✓ x ✓
Sequence 5-9 egocentric dma 15 24.65 2.25 x ✓ x x
Sequence 5-10 egocentric dma 16 26.60 2.04 x ✓ x x

Average - - 21.8 29.93 ∼ 2.00 - - - -

Table 9. Detailed per-sequence statistics for the main dataset (challenge - low light, challenge - moving platform).



dynamic scenes

exposure changes

Figure 8. Visualizations of the egocentric recordings in our dataset.



low light

moving platforms

Figure 9. Visualizations of the egocentric recordings in our dataset.



long outdoor trajectories

Figure 10. Visualizations of the egocentric recordings in our dataset.
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